Cilt:07 Sayı:01 (2020)
Permanent URI for this collection
Browse
Recent Submissions
Item Analysis of Gas Breakdown and Electrostatic Simulation Characteristics of a Spherical Inertial Electrostatic Confinement Fusion Chamber (SIEC-K)(Ankara Üniversitesi Nükleer Bilimler Enstitüsü, 2020-07) Fettahoğlu, Ateş; Elektronik Mühendisliği; Mühendislik FakültesiIn this study, a spherical inertial electrostatic fusion (SIEC-K) chamber is designed, built and operated to analyze electrostatic characteristics and gas breakdown conditions. The fusion chamber consists of two spherical electrodes; where the anode is the outer chamber of the chamber made out of two aluminum hemispheres and the cathode is a combination of stainless-steel wires forming a cage like structure aligned within the center. Design considerations and processes are introduced as the execution of this technology sustains the fundamental grounds to understanding gas breakdown. The conditions for gas breakdown are that under a low pressure environment where a certain potential difference is created between two electrodes, a deep potential well will be formed within the cathode region. The gas filled in the chamber will be ionized and the nucleus of the atoms will be accelerated towards the negative potential well, creating gas breakdown. Considering that this study will not focus on nuclear fusion reactions, the main fuel source is chosen to be air and it is also very convenient to operate with. Electrostatic simulation was made to estimate the plasma region inside of the SIEC-K chamber and check if the proposed design is in accordance with the literature, which is to validate the formation of the potential well within the structure of the cathode. The pressurevoltage values within the range of hardware limitations (1-6 kV) for gas breakdown values are recorded and qualitatively compared to their corresponding values for linear Paschen’s gas breakdown voltage law. The main motivation behind this study is to uncover the basis of plasma characteristics of the SIEC-K Reactor for future studies.Item Estimation of Inelastic Longitudinal Electron Scattering Form Factors in 58,60Ni Nuclei Using OXBASH Code(Ankara Üniversitesi Nükleer Bilimler Enstitüsü, 2020-07) Murshedi, Doaa; Salman, A. D.; Other; OtherMany effective interactions have been developed to provide a better understanding of the nuclear properties by starting with the realistic nucleon-nucleon (NN) interaction and using quantum-mechanical many-body theory. In this study, the calculations of inelastic longitudinal electron scattering form factors for C2 and C4 transitions have been examined in 58,60Ni isotopes. The F5PVH effective interaction for the fp-shell is used with the nucleon-nucleon realistic interaction Michigan three-range Yukawa and Modified surface delta interaction as a two-body interaction. Two shell model codes, CP and OXBASH for windows, have been utilized in order to obtain the results. The core polarization effects are considered as the first-order perturbation theory with the effective charge of both proton and neutron. Based on the obtained results, the effective charge along with the core effects have significantly improved the calculation in term of the agreement with the experimental data. Also, the 60Ni nuclei tend to have a better agreement when compared to 58Ni nuclei.