The matrix sequence in terms of bi-periodic Fibonacci numbers
dc.contributor.author | Coşkun, Arzu | |
dc.contributor.author | Taşkara, Necati | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2021-11-05T12:32:18Z | |
dc.date.available | 2021-11-05T12:32:18Z | |
dc.date.issued | 2019-08-01 | |
dc.description.abstract | In this paper, we define the bi-periodic Fibonacci matrix sequence that represent bi-periodic Fibonacci numbers. Then, we investigate generating function, Binet formula and summations of bi-periodic Fibonacci matrix sequence. After, we say that some behaviours of bi-periodic Fibonacci numbers can be obtained via the properties of this new matrix sequence. Finally, we express that well-known matrix sequences such as Fibonacci, Pell, k-Fibonacci matrix sequences are special cases of this generalized matrix sequence. | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 1949 | tr_TR |
dc.identifier.issn/e-issn | 2618-6470 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 1939 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.571975 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/75936 | |
dc.identifier.volume | 68 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.571975 | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Bi-periodic Fibonacci matrix sequence | tr_TR |
dc.subject | Bi-periodic Fibonacci numbers | tr_TR |
dc.subject | Binet formula | tr_TR |
dc.title | The matrix sequence in terms of bi-periodic Fibonacci numbers | tr_TR |
dc.type | Article | tr_TR |