Integrals of motion and trajectories for the Perlick system I: an algebraic approach
dc.contributor.author | Kuru, S | |
dc.contributor.department | Fen Fakültesi | tr_TR |
dc.date.accessioned | 2019-07-01T08:05:50Z | |
dc.date.available | 2019-07-01T08:05:50Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this paper we tersely recall the main algebraic and geometric properties of the maximally superintegrable system known as "Perlick System Tipe I", considering all possible values of the relevant parameters. We will follow a classical variant of the so called factorization method, emphasizing the role played the Poisson Algebra of the constants of motion in sheding light on the geometric features of the trajectories. | tr_TR |
dc.description.index | Wos | |
dc.identifier.endpage | 12 | tr_TR |
dc.identifier.other | 10.1088/1742-6596/965/1/012033 | |
dc.identifier.startpage | 01 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/66987 | |
dc.language.iso | en | tr_TR |
dc.relation.index | WOS | tr_TR |
dc.relation.journal | XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25) | tr_TR |
dc.subject | OSCILLATOR | tr_TR |
dc.subject | SPACES | tr_TR |
dc.title | Integrals of motion and trajectories for the Perlick system I: an algebraic approach | tr_TR |
dc.type | Article | tr_TR |