Structural derivatives on time scales

dc.contributor.authorBayour, Benaoumeur
dc.contributor.authorTorres, Delfim F. M.
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-11-03T12:21:27Z
dc.date.available2021-11-03T12:21:27Z
dc.date.issued2019-02-01
dc.description.abstractWe introduce the notion of structural derivative on time scales. The new operator of differentiation unifies the concepts of fractal and fractional order derivative and is motivated by lack of classical differentiability of some self-similar functions. Some properties of the new operator are proved and illustrated with examples.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage1196tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue1tr_TR
dc.identifier.startpage1186tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.513107tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/75871
dc.identifier.volume68tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.513107tr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectHausdorff derivative of a function with respect to a fractal measuretr_TR
dc.subjectStructural and fractal derivativestr_TR
dc.subjectSelf-similaritytr_TR
dc.titleStructural derivatives on time scalestr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
97.pdf
Size:
288.95 KB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: