On a new variation of injective modules

dc.contributor.authorTürkmen, Ergül
dc.contributor.authorTürkmen, Burcu Nişancı
dc.contributor.authorPancar, Ali
dc.contributor.authorNebiyev, Celil
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-11-01T11:50:21Z
dc.date.available2021-11-01T11:50:21Z
dc.date.issued2019-02-01
dc.description.abstractIn this paper, we provide various properties of GE and GEE-modules, a new variation of injective modules. We call M a GE-module if it has a g-supplement in every extension N and, we call also M a GEE-module if it has ample g-supplements in every extension N. In particular, we prove that every semisimple module is a GE-module. We show that a module M is a GEE-module if and only if every submodule is a GE-module. We study the structure of GE and GEE-modules over Dedekind domains. Over Dedekind domains the class of GE-modules lies between WS-coinjective modules and Zöschinger's modules with the property (E). We also prove that, if a ring R is a local Dedekind domain, an R-module M is a GE-module if and only if M≅(R^{∗})ⁿ⊕K⊕N, where R^{∗} is the completion of R, K is injective and N is a bounded module.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage711tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue1tr_TR
dc.identifier.startpage702tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.464103tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/75812
dc.identifier.volume68tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.464103tr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectg-supplementtr_TR
dc.subjectGE-moduletr_TR
dc.titleOn a new variation of injective modulestr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2.pdf
Size:
332.18 KB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: