Intertwining algebras of quantum superintegrable systems on the hyperboloid
dc.contributor.author | Kuru, S. | |
dc.contributor.department | Fen Fakültesi | tr_TR |
dc.date.accessioned | 2019-07-01T08:57:06Z | |
dc.date.available | 2019-07-01T08:57:06Z | |
dc.date.issued | 2008 | |
dc.description.abstract | A class of quantum superintegrable Hamiltonians defined on a two-dimensional hyperboloid is considered together with a set of intertwining operators connecting all of them. It is shown that such intertwining operators close a su(2,1) Lie algebra and determine the Hamiltonians through the Casimir operators. The physical states are characterized as unitary representations of su(2, 1). | tr_TR |
dc.description.index | Wos | |
dc.identifier.endpage | 08 | tr_TR |
dc.identifier.other | 10.1088/1742-6596/128/1/012026 | |
dc.identifier.startpage | 01 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/67016 | |
dc.identifier.volume | 128 | tr_TR |
dc.language.iso | en | tr_TR |
dc.relation.index | WOS | tr_TR |
dc.relation.journal | 5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5 | tr_TR |
dc.subject | ISOSPECTRAL POTENTIALS | tr_TR |
dc.subject | WINTERNITZ SYSTEM | tr_TR |
dc.title | Intertwining algebras of quantum superintegrable systems on the hyperboloid | tr_TR |
dc.type | Article | tr_TR |