Some group actions and Fibonacci numbers
dc.contributor.author | Şanlı, Zeynep | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2022-12-26T12:08:50Z | |
dc.date.available | 2022-12-26T12:08:50Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The Fibonacci sequence has many interesting properties and studied by many mathematicians. The terms of this sequence appear in nature and is connected with combinatorics and other branches of mathematics. In this paper, we investigate the orbit of a special subgroup of the modular group. Taking T c := ( c 2 + c + 1 − c c 2 1 − c ) ∈ Γ 0 ( c 2 ) , c ∈ Z , c ≠ 0 , we determined the orbit { T r c ( ∞ ) : r ∈ N } . Each rational number of this set is the form P r ( c ) / Q r ( c ) , where P r ( c ) and Q r ( c ) are the polynomials in Z [ c ] . It is shown that P r ( 1 ) and Q r ( 1 ) the sum of the coefficients of the polynomials P r ( c ) and Q r ( c ) respectively, are the Fibonacci numbers, where P r ( c ) = r ∑ s = 0 ( 2 r − s s ) c 2 r − 2 s + r ∑ s = 1 ( 2 r − s s − 1 ) c 2 r − 2 s + 1 and Q r ( c ) = r ∑ s = 1 ( 2 r − s s − 1 ) c 2 r − 2 s + 2 | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 284 | tr_TR |
dc.identifier.issn/e-issn | 1303-5991 | |
dc.identifier.issue | 1 | tr_TR |
dc.identifier.startpage | 273 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.939096 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/86481 | |
dc.identifier.volume | 71 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.939096 | tr_TR |
dc.relation.journal | Communications, Series A1:Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Suborbital graphs, Pascal triangle, Fibonacci numbers | tr_TR |
dc.title | Some group actions and Fibonacci numbers | tr_TR |
dc.type | Article | tr_TR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 10.31801-cfsuasmas.699831-996155.pdf
- Size:
- 514.75 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.62 KB
- Format:
- Item-specific license agreed upon to submission
- Description: