A novel analysis of integral inequalities in the frame of fractional calculus

dc.contributor.authorTariq, Muhammed
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2022-12-27T11:17:45Z
dc.date.available2022-12-27T11:17:45Z
dc.date.issued2022
dc.description.abstractIn this paper, we define and explore the new family of exponentially convex functions which are called exponentially s–convex functions. We attain the amazing examples and algebraic properties of this newly introduced function. In addition, we find a novel version of Hermite-Hadamard type inequality in the support of this newly introduced concept via the frame of classical and fractional calculus (non-conformable and Riemann-Liouville integrals operator). Furthermore, we investigate refinement of Hermite-Hadamard type inequality by using exponentially s–convex functions via fractional integral operator. Finally, we elaborate some Ostrowski type inequalities in the frame of fractional calculus. These new results yield us some generalizations of the prior results.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage553tr_TR
dc.identifier.issn/e-issn1303-5991
dc.identifier.issue2tr_TR
dc.identifier.startpage533tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.975700tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/86498
dc.identifier.volume71tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.975700tr_TR
dc.relation.journalCommunications, Series A1:Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectConvex functions, s-convex functions, Hermite-Hadamard inequality, Ostrowski type inequality, exponentially s-convex functiontr_TR
dc.titleA novel analysis of integral inequalities in the frame of fractional calculustr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31801-cfsuasmas.975700-1896710.pdf
Size:
529.42 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: