Efficient Chebyshev Economization for Elementary Functions

dc.contributor.authorBekir, Esmat
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-11-30T11:10:03Z
dc.date.available2021-11-30T11:10:03Z
dc.date.issued2019-06-30
dc.description.abstractThis paper presents economized power series for trigonometric and hyperbolic functions. It determines the smallest range over which a function need to be computed and scales the Chebyshev polynomials accordingly. Thus reduced degree polynomials (and hence reduced computations) can be obtained while maintaining the same accuracy as those unscaled higher degree polynomials.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage56tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue2tr_TR
dc.identifier.startpage33tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/76512
dc.identifier.volume69tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineeringtr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectChebyshev polynomialtr_TR
dc.subjectEconomizationtr_TR
dc.subjectTrigonometric functionstr_TR
dc.titleEfficient Chebyshev Economization for Elementary Functionstr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
44.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: