Timelike loxodromes on Lorentzian helicoidal surfaces in Minkowski n-space

dc.contributor.authorDemirci, Burcu Bektaş
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2022-12-28T13:17:10Z
dc.date.available2022-12-28T13:17:10Z
dc.date.issued2022
dc.description.abstractIn this paper, we examine timelike loxodromes on three kinds of Lorentzian helicoidal surfaces in Minkowski n -space. First, we obtain the first order ordinary differential equations which determine timelike loxodromes on the Lorentzian helicoidal surfaces in E n 1 according to the causal characters of their meridian curves. Then, by finding general solutions, we get the explicit parametrizations of such timelike loxodromes. In particular, we investigate the timelike loxodromes on the three kinds of Lorentzian right helicoidal surfaces in E n 1 . Finally, we give an example to visualize the results.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage869tr_TR
dc.identifier.issn/e-issn1303-5991
dc.identifier.issue3tr_TR
dc.identifier.startpage856tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.1007599tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/86580
dc.identifier.volume71tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.1007599tr_TR
dc.relation.journalCommunications, Series A1:Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectLoxodromes (rhumb lines), navigation, rotational surfaces, helicoidal surfaces, Minkowski spacetr_TR
dc.titleTimelike loxodromes on Lorentzian helicoidal surfaces in Minkowski n-spacetr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31801-cfsuasmas.1007599-2018684.pdf
Size:
507.12 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: