Independence complexes of strongly orderable graphs
dc.contributor.author | Yetim, Mehmet Akif | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2022-12-27T08:17:44Z | |
dc.date.available | 2022-12-27T08:17:44Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We prove that for any finite strongly orderable (generalized strongly chordal) graph G, the independence complex Ind(G) is either contractible or homotopy equivalent to a wedge of spheres of dimension at least bp(G)−1, where bp(G) is the biclique vertex partition number of G. In particular, we show that if G is a chordal bipartite graph, then Ind(G) is either contractible or homotopy equivalent to a sphere of dimension at least bp(G) − 1. | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 455 | tr_TR |
dc.identifier.issn/e-issn | 1303-5991 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 445 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.874855 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/86492 | |
dc.identifier.volume | 71 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.874855 | tr_TR |
dc.relation.journal | Communications, Series A1:Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Independence complex, strongly orderable, strongly chordal, chordal bipartite, convex bipartite, homotopy type, biclique vertex partition | tr_TR |
dc.title | Independence complexes of strongly orderable graphs | tr_TR |
dc.type | Article | tr_TR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 10.31801-cfsuasmas.874855-1557508.pdf
- Size:
- 486.71 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.62 KB
- Format:
- Item-specific license agreed upon to submission
- Description: