Independence complexes of strongly orderable graphs

dc.contributor.authorYetim, Mehmet Akif
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2022-12-27T08:17:44Z
dc.date.available2022-12-27T08:17:44Z
dc.date.issued2022
dc.description.abstractWe prove that for any finite strongly orderable (generalized strongly chordal) graph G, the independence complex Ind(G) is either contractible or homotopy equivalent to a wedge of spheres of dimension at least bp(G)−1, where bp(G) is the biclique vertex partition number of G. In particular, we show that if G is a chordal bipartite graph, then Ind(G) is either contractible or homotopy equivalent to a sphere of dimension at least bp(G) − 1.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage455tr_TR
dc.identifier.issn/e-issn1303-5991
dc.identifier.issue2tr_TR
dc.identifier.startpage445tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.874855tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/86492
dc.identifier.volume71tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.874855tr_TR
dc.relation.journalCommunications, Series A1:Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectIndependence complex, strongly orderable, strongly chordal, chordal bipartite, convex bipartite, homotopy type, biclique vertex partitiontr_TR
dc.titleIndependence complexes of strongly orderable graphstr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31801-cfsuasmas.874855-1557508.pdf
Size:
486.71 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: