Dynamical algebras of general Poschl-Teller hierarchies

dc.contributor.authorKuru, S.
dc.contributor.departmentFen Fakültesitr_TR
dc.date.accessioned2019-07-01T08:35:16Z
dc.date.available2019-07-01T08:35:16Z
dc.date.issued2012
dc.description.abstractWe investigate a class of operators connecting general Hamiltonians of the Poschl-Teller type. The operators involved depend on three parameters and their explicit action on eigenfunctions is found. The whole set of intertwining operators close a su(2, 2) approximate to so(4, 2) Lie algebra. The space of eigenfunctions supports a differential-difference realization of an irreducible representation of the su(2, 2) algebra.tr_TR
dc.description.indexWos
dc.identifier.endpage08tr_TR
dc.identifier.other10.1088/1742-6596/343/1/012086
dc.identifier.startpage01tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/67000
dc.identifier.volume343tr_TR
dc.language.isoentr_TR
dc.relation.indexWOStr_TR
dc.relation.journal7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7)tr_TR
dc.subjectRADIAL SCHRODINGER-EQUATIONtr_TR
dc.subjectLOWERING OPERATORStr_TR
dc.titleDynamical algebras of general Poschl-Teller hierarchiestr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
6.pdf
Size:
683.22 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: