Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions
dc.contributor.author | Yokuş, Nihal | |
dc.contributor.author | Arpat, Esra Kır | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2021-11-04T07:52:55Z | |
dc.date.available | 2021-11-04T07:52:55Z | |
dc.date.issued | 2019-08-01 | |
dc.description.abstract | In this paper, we consider the operator L generated in L₂(R₊) by the differential expression l(y)=-y′′+q(x)y,x∈R₊:=[0,∞) and the boundary condition ((y′(0))/(y(0)))=α₀+α₁λ+α₂λ², where q is a complex valued function and α_{i}∈C,[mbox]<LaTeX>\mbox{\:}</LaTeX>i=0,1,2α₂. We have proved that spectral expansion of L in terms of the principal functions under the condition q∈AC(R₊), lim_{x→∞}q(x)=0, sup[e^{ε√x}|q′(x)|]<∞, ε>0 taking into account the spectral singularities. We have also proved the convergence of the spectral expansion. | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 1334 | tr_TR |
dc.identifier.issn/e-issn | 2618-6470 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 1316 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.526270 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/75882 | |
dc.identifier.volume | 68 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.526270 | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Eigenvalues | tr_TR |
dc.subject | Spectral singularities | tr_TR |
dc.subject | Principal functions | tr_TR |
dc.title | Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions | tr_TR |
dc.type | Article | tr_TR |