Estimating co2 Emissions By Using Energy Intensıty Data of Oecd Countries
dc.contributor.author | Gunduç, Semra | |
dc.contributor.author | Eryiğit, Recep | |
dc.contributor.department | Bilgisayar Mühendisliği | tr_TR |
dc.contributor.faculty | Mühendislik Fakültesi | tr_TR |
dc.date.accessioned | 2021-11-30T11:39:03Z | |
dc.date.available | 2021-11-30T11:39:03Z | |
dc.date.issued | 2019-06-30 | |
dc.description.abstract | It is discussed that economic development has an essential effect on the country’s CO2 emission which plays an important role in global warming. In this research well-known machine learning algorithm Extreme Learning Machine, ELM, is used to investigate the relationship between CO2 emission and energy intensity for countries in OECD. The results indicate a strong correlation and the method perform well for estimation. | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 75 | tr_TR |
dc.identifier.issn/e-issn | 2618-6462 | |
dc.identifier.issue | 1 | tr_TR |
dc.identifier.startpage | 68 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/76518 | |
dc.identifier.volume | 69 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | tr_TR |
dc.subject | Extreme Learning Machine (ELM) | tr_TR |
dc.subject | Energy Intensity | tr_TR |
dc.subject | CO2 emission | tr_TR |
dc.title | Estimating co2 Emissions By Using Energy Intensıty Data of Oecd Countries | tr_TR |
dc.type | Article | tr_TR |