Operator inequalities in reproducing kernel Hilbert spaces
dc.contributor.author | Yamancı, Ulaş | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2022-12-26T11:40:01Z | |
dc.date.available | 2022-12-26T11:40:01Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper, by using some classical Mulholland type inequality, Berezin symbols and reproducing kernel technique, we prove the power inequalities for the Berezin number b e r ( A ) for some self-adjoint operators A on H ( Ω ) . Namely, some Mulholland type inequality for reproducing kernel Hilbert space operators are established. By applying this inequality, we prove that ( b e r ( A ) ) n ≤ C 1 b e r ( A n ) for any positive operator A on H ( Ω ) . | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 211 | tr_TR |
dc.identifier.issn/e-issn | 1303-5991 | |
dc.identifier.issue | 1 | tr_TR |
dc.identifier.startpage | 204 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.926981 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/86474 | |
dc.identifier.volume | 71 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.926981 | tr_TR |
dc.relation.journal | Communications, Series A1:Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Mulholland type inequality, Berezin number, positive operator, reproducing kernel Hilbert space, Berezin symbol | tr_TR |
dc.title | Operator inequalities in reproducing kernel Hilbert spaces | tr_TR |
dc.type | Article | tr_TR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 10.31801-cfsuasmas.699831-996155.pdf
- Size:
- 514.75 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.62 KB
- Format:
- Item-specific license agreed upon to submission
- Description: