Power series methods and statistical limit superior

dc.contributor.authorBayram, Nilay Şahin
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2022-12-28T12:56:28Z
dc.date.available2022-12-28T12:56:28Z
dc.date.issued2022
dc.description.abstractGiven a real bounded sequence x = ( x j ) and an infinite matrix A = ( a n j ) Knopp core theorem is equivalent to study the inequality l i m s u p A x ≤ l i m s u p x . Recently Fridy and Orhan [6] have considered some variants of this inequality by replacing l i m s u p x with statistical limit superior s t − l i m s u p x . In the present paper we examine similar type of inequalities by employing a power series method P ; a non-matrix sequence-to-function transformation, in place of A = ( a n j ) .tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage758tr_TR
dc.identifier.issn/e-issn1303-5991
dc.identifier.issue3tr_TR
dc.identifier.startpage752tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.1036338tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/86560
dc.identifier.volume71tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.1036338tr_TR
dc.relation.journalCommunications, Series A1:Mathematics and Statisticstr_TR
dc.relation.publicationcategoryGazete Makalesi - Ulusaltr_TR
dc.subjectNatural density, statistical convergence, statistical limit superior, core of a sequence, power series methodstr_TR
dc.titlePower series methods and statistical limit superiortr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31801-cfsuasmas.1036338-2131156.pdf
Size:
461.27 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: