Power series methods and statistical limit superior
dc.contributor.author | Bayram, Nilay Şahin | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2022-12-28T12:56:28Z | |
dc.date.available | 2022-12-28T12:56:28Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Given a real bounded sequence x = ( x j ) and an infinite matrix A = ( a n j ) Knopp core theorem is equivalent to study the inequality l i m s u p A x ≤ l i m s u p x . Recently Fridy and Orhan [6] have considered some variants of this inequality by replacing l i m s u p x with statistical limit superior s t − l i m s u p x . In the present paper we examine similar type of inequalities by employing a power series method P ; a non-matrix sequence-to-function transformation, in place of A = ( a n j ) . | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 758 | tr_TR |
dc.identifier.issn/e-issn | 1303-5991 | |
dc.identifier.issue | 3 | tr_TR |
dc.identifier.startpage | 752 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.1036338 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/86560 | |
dc.identifier.volume | 71 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.1036338 | tr_TR |
dc.relation.journal | Communications, Series A1:Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Gazete Makalesi - Ulusal | tr_TR |
dc.subject | Natural density, statistical convergence, statistical limit superior, core of a sequence, power series methods | tr_TR |
dc.title | Power series methods and statistical limit superior | tr_TR |
dc.type | Article | tr_TR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 10.31801-cfsuasmas.1036338-2131156.pdf
- Size:
- 461.27 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.62 KB
- Format:
- Item-specific license agreed upon to submission
- Description: