Cilt:63 Sayı:01 (2021)
Permanent URI for this collection
Browse
Browsing Cilt:63 Sayı:01 (2021) by Subject "Gross domestic product estimation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Determining the most relevant input parameter set by using extreme learning machine(Ankara Üniversitesi Fen Fakültesi, 2021-06-30) Gündüç, Semra; Eryiğit, Recep; Bilgisayar Mühendisliği; Mühendislik FakültesiIn this work, Extreme Learning Machine (ELM) algorithm is used to estimate the GDP per capita. The amount of electricity production, from four different sources, is chosen as input parameters. To find out the most relevant input data for a reasonable estimation of GDP, different sources introduced separately to ELM. By following the coefficient of determination of estimation, by trial and error, results are obtained. The residuals are also given to show that model perform well. Renewable energy sources produce the best results in the estimation of GDP.