Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Korkmaz, Emrah"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Combinatorial results of collapse for order-preserving and order-decreasing transformations
    (Ankara Üniversitesi, 2022) Korkmaz, Emrah; Other; Other
    The full transformation semigroup Tn is defined to consist of all functions from Xn={1,…,n} to itself, under the operation of composition. In \cite{JMH1}, for any α in Tn, Howie defined and denoted collapse by c(α)=⋃t∈\im(α){tα−1:|tα−1|≥2}. Let On be the semigroup of all order-preserving transformations and Cn be the semigroup of all order-preserving and decreasing transformations on Xn under its natural order, respectively. Let E(On) be the set of all idempotent elements of On, E(Cn) and N(Cn) be the sets of all idempotent and nilpotent elements of Cn, respectively. Let U be one of {Cn,N(Cn),E(Cn),On,E(On)}. For α∈U, we consider the set \imc(α)={t∈\im(α):|tα−1|≥2}. For positive integers 2≤k≤r≤n, we define U(k)={α∈U:t∈\imc(α) and |tα−1|=k},U(k,r)={α∈U(k):∣∣⋃t∈\imc(α)tα−1|=r}. The main objective of this paper is to determine |U(k,r)|, and so |U(k)| for some values r and k.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback