Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dragomir, Sever"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    An extension of trapezoid inequality to the complex integral
    (Ankara Universitesi, 2021) Dragomir, Sever; Other; Other
    In this paper we extend the trapezoid inequality to the complex integral by providing upper bounds for the quantity | ( v − u ) f ( u ) + ( w − v ) f ( w ) − ∫ γ f ( z ) d z | under the assumptions that γ is a smooth path parametrized by z ( t ) , t ∈ [ a , b ] , u = z ( a ) , v = z ( x ) with x ∈ ( a , b ) and w = z ( b ) while f is holomorphic in G , an open domain and γ ∈ G . An application for circular paths is also given.
  • No Thumbnail Available
    Item
    Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation
    (Ankara Üniversitesi Fen Fakültesi, 2020-06-30) Dragomir, Sever; Other; Other
    Let g be a strictly increasing function on (a,b), having a continuous derivative g′ on (a,b). For the Lebesgue integrable function f:(a,b)→C, we define the k-g-left-sided fractional integral of f by S_{k,g,a+}f(x)=∫_{a}^{x}k(g(x)-g(t))g′(t)f(t)dt, x∈(a,b] and the k-g-right-sided fractional integral of f by S_{k,g,b-}f(x)=∫_{x}^{b}k(g(t)-g(x))g′(t)f(t)dt, x∈[a,b), where the kernel k is defined either on (0,∞) or on [0,∞) with complex values and integrable on any finite subinterval. In this paper we establish some new inequalities for the k-g-fractional integrals of functions of bounded variation.Examples for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g and a general exponential fractional integral are also provided.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement