Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Davvaz, B."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    On the Representations and Characters of Cat¹-Groups and Crossed Modules
    (Ankara Üniversitesi, 2019-02-01) Davvaz, B.; Dehghani, M. A.; Other; Other
    Let G be a group and V a K-vector space. A K-linear representation of G with representation space V is a homomorphism φ:G→GL(V). The dimension of V is called the degree of φ. If φ is a representation of G, then the character φ is defined for g∈G as ψ_{g}(φ)=Tr(φ(g)). In this paper we study the representations and characters of cat¹-groups and crossed modules. We show that for class functions ψ₁ and ψ₂ of crossed module χ=(G,M,μ,∂), the inner product is Hermitian. Also, if χ=(G,M,μ,∂) is a finite crossed module and ψ is an irreducible character of χ, then ∑_{m∈M,g∈G}ψ(m,g)ψ(m⁻¹,g⁻¹)=|G||M|. Moreover, we present some examples of the character tables of crossed modules.
  • No Thumbnail Available
    Item
    Soft semi-topological polygroups
    (Ankara Üniversitesi, 2022) Davvaz, B.; Other; Other
    By removing the condition that the inverse function is continuous in soft topological polygroups, we will have less constraint to obtain the results. We offer different definitions for soft topological polygroups and eliminate the inverse function continuity condition to have more freedom of action.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback