Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Acu, Ana Maria"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Approximation properties of modified q-Bernstein-Kantorovich operators
    (Ankara Üniversitesi Fen Fakültesi, 2019-08-01) Acu, Ana Maria; Agrawal, Purshottam; Kumar, Dharmendra; Other; Other
    In the present paper we define a q-analogue of the modified Bernstein-Kantorovich operators introduced by Ozarslan and Duman (Numer. Funct. Anal. Optim. 37:92-105,2016). We establish the shape preserving properties of these operators e.g. monotonicity and convexity and study the rate of convergence by means of Lipschitz class and Peetre's K-functional and degree of approximation with the aid of a smoothing process e.g Steklov mean. Further, we introduce the bivariate case of modified q-Bernstein-Kantorovich operators and study the degree of approximation in terms of the partial and total modulus of continuity and Peetre's K-functional. Finally, we introduce the associated GBS (Generalized Boolean Sum) operators and investigate the approximation of the Bogel continuous and Bogel differentiable functions by using the mixed modulus of smoothness and Lipschitz class.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback