dc.contributor.author | Oğuz, Gencay | |
dc.contributor.author | Orhan, Cihan | |
dc.date.accessioned | 2021-11-09T11:26:30Z | |
dc.date.available | 2021-11-09T11:26:30Z | |
dc.date.issued | 2019-08-01 | |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.562214 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/75960 | |
dc.description.abstract | Let
T
be a bounded linear operator on a Banach space
X
. Replacing the Ces\`{a}ro matrix by a regular matrix
A
=
(
a
n
j
)
Cohen studied a mean ergodic theorem. In the present paper we extend his result by taking a sequence of infinite matrices
A
=
(
A
(
i
)
)
that contains both convergence and almost convergence. This result also yields an
A
-ergodic decomposition. When
T
is power bounded we give a characterization for
T
to be
A
-ergodic. | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.562214 | tr_TR |
dc.subject | Infinite matrices | tr_TR |
dc.subject | Almost convergence | tr_TR |
dc.subject | Ergodic theorems | tr_TR |
dc.title | Mean ergodic type theorems | tr_TR |
dc.type | Article | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | tr_TR |
dc.contributor.department | Other | tr_TR |
dc.identifier.volume | 68 | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 2264 | tr_TR |
dc.identifier.endpage | 2271 | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.identifier.issn/e-issn | 2618-6470 | |
dc.contributor.faculty | Other | tr_TR |
dc.description.index | Trdizin | tr_TR |