sherpa/romeo

Show simple item record

dc.contributor.authorYamancı, Ulaş
dc.date.accessioned2021-11-04T06:28:33Z
dc.date.available2021-11-04T06:28:33Z
dc.date.issued2019-08-01
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.425391tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/75879
dc.description.abstractIn this paper, we introduce the concept of (Ber)-convergence of bounded double sequences in the Fock space F(C²). We show that every (Ber)-convergent double sequence is Borel convergent. Namely, we prove the following theorem by using the Berezin symbol method: If the {x_{ij}}_{i,j=0}^{∞} is regularly convergent to x, then lim_{k,l→∞}e^{-k-l}∑_{i,j=0}^{∞}x_{ij}((k^{i}t^{j})/(i!j!))=x.tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.425391tr_TR
dc.subjectBorel convergencetr_TR
dc.subjectBerezin symboltr_TR
dc.subjectPringsheim's sensetr_TR
dc.titleOn Borel convergence of double sequencestr_TR
dc.typeArticletr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.contributor.departmentOthertr_TR
dc.identifier.volume68tr_TR
dc.identifier.issue2tr_TR
dc.identifier.startpage1289tr_TR
dc.identifier.endpage1293tr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.identifier.issn/e-issn2618-6470
dc.contributor.facultyOthertr_TR
dc.description.indexTrdizintr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record