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Abstract. This paper is devoted to investigating the uniform convergence
conditions of Fourier series expansions of continuous functions in terms of
eigenfunctions of a Sturm-Liouville problem with eigenparameter in one of the
boundary conditions on a closed interval. Such problems are quite common in
mathematical physics problems.

1. Introduction

In many mathematical physics problems, partial di¤erential equations are en-
countered. The most common of these are di¤erential equations of the second order.
Partial di¤erential equations of the second order of the hyperbolic type occur most
frequently in physical problems with vibration processes such as the transverse or
longitudinal vibrations of a string, a membrane and rod, the vibrational energy of
a string, hydrodynamics and acoustics, etc. [16]. On the other hand, di¤erential
equations often give an in�nite number of solutions. However, for the mathemat-
ical description of a physical process, su¢ cient conditions must be determined to
uniquely determine the process. That is, solutions should be limited under cer-
tain conditions. Whence, it is necessary to supplement that equation with certain
additional equations such as initial or boundary conditions in order to specify the
process uniquely when the physical problem is led to a partial di¤erential equation.
In this way, a physical model corresponds to a boundary value problem.
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One of the widest methods used to solve partial di¤erential equations is Fourier�s
method, which is also called the method of separation of variables. Finding values
�, called eigenvalues for which non-trivial solutions called eigenfunctions, of the
eigenvalue problem that arises with the application of this method is required, and
also obtaining these solutions of it. The problem formulated in this way is also
called Sturm-Liouville�s problem. It is known from Fourier series theory that the
arbitrary partially continuous and partially di¤erentiable a function f(x) given in
the interval [0; l] can be expanded as Fourier series in the sine and cosine functions
or eigenfunctions of an eigenvalue problem. Therefore, the solutions of an eigenvalue
problem are in the form of an in�nite series. If this series divergent or the function
de�ned by this series is not di¤erentiable, then it can�t naturally represent a solution
of a di¤erential equation. Consequently, investigating the convergence conditions of
these series and �nding the representation of the solutions are of great importance.
In this study, our aim is to investigate the uniform convergence conditions of

spectral expansions of continuous functions in terms of eigenfunctions of the Sturm-
Liouville problem:

� u00 + q(x)u = �u; 0 < x < 1; (1)

u(0) = 0; u0(0) = �(au(1) + bu0(1)) (2)

where � is an eigenparameter, q(x) 2 L1(0; 1) is a complex-valued function, a and
b are arbitrary complex numbers which satisfy the condition jaj+ jbj 6= 0.
In the spectral theory of di¤erential operators, there are many articles contain-

ing Sturm-Liouville equations with boundary conditions linearly or polynomially
dependent on the spectral parameter [6, 7, 3, 4, 5, 1, 2, 9, 10, 11, 12, 17]. The conver-
gence conditions of Fourier series expansions of functions in some functional class of
Sturm-Liouville operators are investigated in [6,7,3,4,5,1,2,9,10]. For example, the
convergence conditions of series expansions of the following problems are studied
in [1], [6], [7], respectively: spectral problems that appear modeling heat transfer
in a homogeneous rod with a linear relation between the heat �ux and temperature
at one endpoint and with a lumped heat capacity at the other endpoint, spectral
problems that appear in a model of a transrelaxation heat process and in the math-
ematical description of vibrations of a loaded string and, spectral problems that
appear on vibrations of a homogeneous loaded string, torsional vibrations of a rod
with a pulley at one end, heat propagation in a rod with lumped heat capacity at
one end, and the current in a cable grounded at one end through a concentrated
capacitance or inductance.
Moreover, the spectral problem

�u00 + q(x)u = �u; 0 < x < 1;
u(0) = 0; u0(0)� a�u(1) = 0

was considered in [14] for q(x) = 0 and a > 0; in [8] for q(x) 6= 0 and a 6= 0.
The conditions of the uniform convergence of spectral expansions of continuous
functions in the system of eigenfunctions in these studies were established. Note
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that, the problems considered in these studies are special cases of the problem
(1)-(2). Therefore, we will assume that b 6= 0 from now on.

2. Preliminaries

In this section, some properties will be given in order to reach the desired results
of the problem (1)-(2).
Denote the solution of the equation (1), satisfying the initial conditions

 (0) = 0;  0(0) = 1 (3)

by  (x) =  (x; �).

Lemma 1 ( [13]). Let � = �2. Then,

 (x; �) =
sin�x

�
+
1

�

xZ
0

sinf� (x� �)g q(�) (�; �)d�: (4)

Lemma 2 ( [13]). Let � = �+it. Then, there exists �0 > 0 such that, for j�j > �0,
the estimate

 (x; �) =
sin�x

�
+O

 
ejtjx

j�j2

!
(5)

is valid, where the function O
�
ejtjxj�j�2

�
is the entire function of � for any �xed

x in [0; 1]. Moreover, the estimate (5) is uniform with respect to x 2 [0; 1].

Theorem 3 ( [15]). All the eigenvalues of the problem (1)-(2) are simple. More-
over, they have form in�nite sequence �n (n = 0; 1; 2; :::) which has no �nite limit
points. And, the following asymptotic estimate are valid for su¢ ciently large n:

�n =

��
n� 1

2

�
�

�2
+O (1) ; (6)

 n(x) =  (x; �n) =
sin
�
n� 1

2

�
�x

n�
+O

�
1

n2

�
: (7)

Theorem 4 ( [15]). If (b�n)2 6= 1 (n = 0; 1; 2; :::) and r is an arbitrary �xed
non-negative integer, then the system f n(x)g (n = 0; 1; :::;n 6= r) is minimal in
L2(0; 1).

Corollary 5 ( [15]). If (b�n)2 6= 1 (n = 0; 1; 2; :::) and r is an arbitrary �xed
non-negative integer, then the system f'n(x)g which are biorthogonally conjugates
to the system f n(x)g is given by the following formula:

'n(x) = an

�
 n(1� x) + b�n n(x)

 n(1)
�  r(1� x) + b�r r(x)

 r (1)

�
; (8)

where an = �
�

1
�n
+�n

�
a@ (1; �n)@� +b@ 

0
(1; �n)
@�

���1
:
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Theorem 6 ( [15]). If (b�n)2 6= 1 (n = 0; 1; 2; :::) and r is an arbitrary �xed non-
negative integer, then the system f n(x)g (n = 0; 1; :::;n 6= r) is a basis in Lp(0; 1)
(1 < p <1), and this basis is unconditional for p = 2.

3. Main Results

3.1. The Sharpened Asymptotics for Eigenparameters. The asymptotic es-
timates of eigenvalues (6) and eigenfunctions (7) of the problem (1)-(2) should be
sharpened to give theorem about the uniform convergence conditions of Fourier se-
ries expansions of continuous functions in terms of eigenfunctions of this problem.
In this subsection, the expression and proof of the relevant theorem will be given
to �nalize these asymptotic estimates.

Theorem 7. Let �n = �2n (Re �n � 0). The asymptotic estimates

�n =

�
n� 1

2

�
� +

c0
n�

+O

�
�n
n

�
; (9)

 n(x) =
sin
�
n� 1

2

�
�x�

n� 1
2

�
�

+
�(x)

(n�)
2 cos

�
n� 1

2

�
�x

+
�n(x)

2(n�)
2 cos

�
n� 1

2

�
�x+

�n(x)

2(n�)
2 sin

�
n� 1

2

�
�x

+O

�
�n
n2

� (10)

are valid for su¢ ciently large n, where c0 = a
b+

1
2

1R
0

q(�)d�, �(x) = c0x� 1
2

xR
0

q(�)d�,

�n(x) =
xR
0

q(�) cos(2n� 1)��d�, �n(x) =
xR
0

q(�) sin(2n� 1)��d� and

�n =

���� 1R
0

q(�) cos(2n� 1)��d�
����+ 1

n .

Proof. Let � = �n; n 2 N. The eigenvalues of the problem (1)-(2) are the roots of
the equation

 0n(0) = �n
�
a n (1) + b 

0
n(1)

�
(11)

because  n(x) is the solution of the equation (1) which satis�es the conditions (3).
Firstly, we now need to do the following calculations:
Let �n = �2n. Then, the estimate

�n =
p
�n =

�
n� 1

2

�
� + �n (12)

is satis�ed from (6), where �n = O
�
n�1

�
. The main purpose of this proof is to

write a sharper expression of the estimate �n.
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On the other hand, it can be easily seen that the estimate

 n(x) =
sin�nx

�n
+O

�
n�2

�
(13)

is valid from (5).
By using (12) and (13) in the estimate obtained as a result of some basic calcu-

lations in (4) and in the di¤erential of this estimate with respect to x, we obtain
the estimates

 n(x) =
sin�nx

�n
�
cos
�
n� 1

2

�
�x

2(n�)2

xZ
0

q(�)d�

+
cos
�
n� 1

2

�
�x

2(n�)2

xZ
0

q(�) cos(2n� 1)��d�

+
sin
�
n� 1

2

�
�x

2(n�)2

xZ
0

q(�) sin(2n� 1)��d� +O
�
n�3

�
;

(14)

 0n(x) = cos�nx�
sin
�
n� 1

2

�
�x

2n�

xZ
0

q(�)d�

�
sin
�
n� 1

2

�
�x

2n�

xZ
0

q(�) cos(2n� 1)��d�

+
cos
�
n� 1

2

�
�x

2n�

xZ
0

q(�) sin(2n� 1)��d� +O
�
n�2

�
:

(15)

With the help of the calculations

sin�n = (�1)
n�1

+O
�
n�2

�
; cos�n = (�1)

n
�n +O

�
n�3

�
;

sin�n
�n

=
(�1)n�1

n�
+O(n�4)

from (12), we can respectively rewrite for x = 1 the estimates (14) and (15) as
follows:

 n(1) =
(�1)n�1

n�
+O(n�2); (16)

 0n(1) = (�1)
n
�n +

(�1)n�1

2n�

xZ
0

q(�)d� +O

�
�n
n2

�
; (17)

where �n =

���� 1R
0

q(�) cos(2n� 1)��d�
����+ 1

n .
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Secondly, by considering (16) and (17) in the equation (11), we obtain the equa-
tion

a (�1)n�1

n�
+ b (�1)n �n +

b(�1)n�1
2n�

1Z
0

q (�) d� +O

�
�n
n

�
= 0:

The last equation implies that the estimate

�n =

a
b +

1
2

1R
0

q(�)d�

n�
+O

�
�n
n

�
(18)

holds. The above formal reasoning shows that the estimate (9) should hold.
Furthermore, by using (9) and (18), we have the term

sin�nx

�n
=
sin
�
n� 1

2

�
�x�

n� 1
2

�
�

+
c0x

(n�)
2 cos

�
n� 1

2

�
�x +O

�
�n
n2

�
; (19)

where c0 = a
b +

1
2

1R
0

q(�)d�:

Consequently, the asymptotic estimate (10) follows from (14) and (19). The
Theorem 7 is proved with this. �

3.2. The Uniform Convergence Conditions of Spectral Expansions. In this
section, we will investigate the uniform convergence of Fourier series expansions for
the continuous functions in the system of eigenfunctions and the functions which
are biorthogonally conjugate to eigenfunctions of the problem (1)-(2)

Theorem 8. Let r be an arbitrary �xed non-negative integer. If f(x) 2 C[0; 1] has a
uniformly convergent Fourier series expansion in the system

�p
2 sin

�
n� 1

2

�
�x
	1
n=1

on [0; 1], then this function can be expanded as Fourier series in the system f n(x)g
(n = 0; 1; : : : ;n 6= r) on [0; 1] and this expansion are uniformly convergent on the
same interval.

Proof. Let us consider the Fourier series expansion of a continuous function f(x)
in the system f n (x)g on [0; 1]:

	(x) =
1X

n=0;n 6=r
(f; 'n) n(x); (20)

where the system 'n(x) (n = 0; 1; : : : ;n 6= r) is de�ned by (8). In addition, the
estimate an in this system can also be written as the form

an =
2(�1)n�1

bn�
+O

�
n�2

�
: (21)
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Now, we can analyze the series (20) in the form

F (x) =
1X

n=r+1

(f; 'n) n (x) =
3X
i=1

Fi(x) (22)

to investigate the uniform convergence of it on [0; 1], where

F1(x) =
1X

n=r+1

an
 n (1)

�
f;  n (1� x)

�
 n (x); (23)

F2(x) =
1X

n=r+1

ban�n
 n (1)

�
f;  n (x)

�
 n (x); (24)

F3(x) =

�
f;  r (1� x) + b�r r (x)

�
 r (1)

1X
n=r+1

an n (x): (25)

Firstly, the series (23) is uniformly convergent on the interval [0; 1] by virtue of
the estimate

an
 n(1)

=
2

b
+O

�
n�1

�
; (26)

which follows from (16) and (21).
Secondly, let us show that the series (24) is uniformly convergent on the interval

[0; 1]: Thus, we consider the sequence fSmg1m=1, which is de�ned the partial sums
of the series (24) can be represented in the form

Sm(x) =
mX

n=r+1

ban�n
 n (1)

�
f;  n (x)

�
 n (x):

On the other hand, since ban�n
 n(1)

= 2�n +O (n) by using (26), we have the identity

p
2�n n (x) =

p
2sin

�
n� 1

2

�
�x+

p
2� (x)

n�
cos

�
n� 1

2

�
�x

+
�n (x)p
2n�

cos

�
n� 1

2

�
�x +

�n (x)p
2n�

sin

�
n� 1

2

�
�x +O

�
�n
n

�
;

where �(x), �n(x) and �n(x) are de�ned on Theorem 7 and �n = �2n. From the
last identity, we obtain

ban�n
 n(1)

�
f;  n (x)

�
 n (x) =

�
f;
p
2 sin

�
n� 1

2

�
�x

�p
2 sin

�
n� 1

2

�
�x+Gn (x) ;
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where

Gn(x) =

�
f; sin

�
n� 1

2

�
�x

�
O(n�1)

+

�
f(x)�(x); cos

�
n� 1

2

�
�x

�
O(n�1)

+

�
f; �n(x) cos

�
n� 1

2

�
�x

�
O(n�1)

+

�
f; �n(x) sin

�
n� 1

2

�
�x

�
O(n�1)

+O

�
�n
n

�
:

(27)

So, the identity

Sm (x) =

mX
n=r+1

�
f;
p
2 sin

�
n� 1

2

�
�x

�p
2 sin

�
n� 1

2

�
�x+

mX
n=r+1

Gn (x)

holds.
The �rst sum in the last identity is the Fourier series expansion of f(x) in the

system
�p
2 sin

�
n� 1

2

�
�x
	1
n=1

. Consequently, the uniform convergence of this sum
as m!1 on the interval [0; 1] is stipulated in the assumptions of the Theorem 8.
On the other hand, we now will examine the uniformly convergence of the other

sums
mX

n=r+1

Gn (x) (28)

as m!1: From (27), we have

jGn(x)j �
c1
n

������f; sin�n� 12
�
�x

�����+ �����f(x)�(x); cos�n� 12
�
�x

�����
+

�����f; �n(x) cos�n� 12
�
�x

�����+ �����f; �n(x) sin�n� 12
�
�x

�����
+O (�n)g

� c2

(�����f; sin�n� 12
�
�x

�����2 + �����f(x)�(x); cos�n� 12
�
�x

�����2

+

0@ 1Z
0

jf(x)�n(x)j dx

1A2

+

0@ 1Z
0

jf(x)�n(x)j dx

1A2

+O

�
�n
n

��
for su¢ ciently large n, where c1 and c2 are real constants.



THE UNIFORM CONVERGENCE CONDITION OF EXPANSIONS OF A PROBLEM 213

The sums
mX

n=r+1

�����f; sin�n� 12
�
�x

�����2; mX
n=r+1

�����f (x)�(x); cos�n� 12
�
�x

�����2;
mX

n=r+1

O

�
�n
n

�
are convergent as m!1: Moreover, by the Bessel inequality, we get

1X
n=r+1

0@ 1Z
0

jf(x)�n(x)j dx

1A2

� kfk2
1X

n=r+1

1Z
0

j�n(x)j
2
dx

= kfk2
1Z
0

1X
n=r+1

������
xZ
0

q(�) sin(2n� 1)��d�

������
2

dx

� c3kfk2
1Z
0

xZ
0

jq(�)j2d�dx

� c3kfk2kqk2

and, similarly
1X

n=r+1

0@ 1Z
0

jf(x)�n(x)j dx

1A2

� c4kfk2kqk2;

where c3 and c4 are real constants. Namely, the series (28) as m!1 is absolutely
and uniformly convergent on the interval [0; 1].
Thirdly, the series (25) is uniformly convergent on the interval [0; 1], by virtue

of the estimate
1X

n=r+1

an n(x) =
1X

n=r+1

O
�
n�2

�
which follows from (14) and (21).
As a result of all these calculations, the series (22), so the series (20), is uniformly

convergent on the interval [0; 1]. The proof of the Theorem 8 is completed. �
Corollary 9. If f(x) is a function that provides the hypothesis of the Theorem
8, then this function can also be expanded as Fourier series in the biorthogonal
system 'n(x) (n = 0; 1; : : : ;n 6= r) is de�ned by (8) on [0; 1] and this expansion
are uniformly convergent on this interval.

Proof. Consider the Fourier series of f(x) in the system (8) on [0; 1]:

�(x) =
1X

n=0;n 6=r
(f;  n)'n(x) �

1X
n=r+1

(f;  n)'n(x) =
3X
i=1

Hi(x);
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where

H1(x) =
1X

n=r+1

an
 n (1)

�
f;  n(x)

�
 n (1� x); (29)

H2(x) =
1X

n=r+1

ban�n
 n (1)

�
f;  n(x)

�
 n (x); (30)

H3(x) = �
 r (1� x) + b�r r (x)

 r (1)

1X
n=r+1

an(f;  n(x)): (31)

It can be seen that the convergence of the series (29)-(31) are calculated by a
similar method using in examining the convergence of the series (23)-(25). �
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