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ON PROXIMITY SPACES AND TOPOLOGICAL HYPER
NEARRINGS

Somaye BORHANI-NEJAD and B. DAVVAZ

Department of Mathematics, Yazd University, Yazd, IRAN

Abstract. In 1934 the concept of algebraic hyperstructures was first intro-
duced by a French mathematician, Marty. In a classical algebraic structure,
the composition of two elements is an element, while in an algebraic hyper-
structure, the result of this composition is a set. In this paper, we prove some
results in topological hyper nearring. Then we present a proximity relation on
an arbitrary hyper nearring and show that every hyper nearring with a topol-
ogy that is induced by this proximity is a topological hyper nearring. In the
following, we prove that every topological hyper nearring can be a proximity
space.

1. Introduction

In 1934, the concept of hypergroups was first introduced by a French mathemati-
cian, Marty [22]. In the following, it was studied and extended by many researchers,
namely, Corsini [3], Corsini and Leoreanu [4], Davvaz [6—8], Frenni [12], Koskas [20],
Mittas [23], Vougiouklis, and others. The topological hyper nearring notion is de-
fined and studied by Borhani and Davvaz in [2].
In the 1950’s, Efremovic̆ [10, 11], a Russian mathematician, gave the definition of
proximity space, which he called infinitesimal space in a series of his papers. He
axiomatically characterized the proximity relation A is near B for subsets A and
B of any set X. The set X, together with this relation, was called an infinitesimal
(proximity) space. Defining the closure of a subset A of X to be the collection of
all points of X near A, Efremovic̆ [10,11] showed that a topology can be introduced
in a proximity space.
In this paper, we study some remarks on topological hyper nearring, then we
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define a proximity relation on hyper nearring and, we will prove that every hyper
nearring with a topology that is induced by this proximity is a topological hyper
nearring. In the following, we show that every topological hyper nearring is a
proximity space.

2. Preliminaries

In this section, we recall some basic classical definitions of topology from [21]
and definitions related to hyperstructures that are used in what follows.

Definition 1. [6] A hyper nearring is an algebraic structure (R,+, ·) which satisfies
the following axioms:
(1) (R,+) is a quasi canonical hypergroup, i.e., in (R,+) the following conditions

hold:

(i) x+ (y + z) = (x+ y) + z for all x, y, z ∈ R;
(ii) There is 0 ∈ R such that x+ 0 = 0 + x = x, for all x ∈ R;
(iii) For any x ∈ R there exists one and only one x′ ∈ R such that 0 ∈ x + x′

(we shall write −x for x′ and we call it the opposite of x);
(iv) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.
If A and B are two non-empty subsets of R and x ∈ R, then we define:

A+B =
⋃
a∈A
b∈B

a+ b, x+A = {x}+AandA+ x = A+ {x}.

(2) (R, ·) is a semigroup respect to the multiplication, having 0 as a left absorbing
element, i.e., x · 0 = 0 for all x ∈ R. But, in general, 0 · x 6= 0 for some x ∈ R.
(3) The multiplication is left distributive with respect to the hyperoperation +,

i.e., x · (y + z) = x · y + x · z for all x, y, z ∈ R.

Note that for all x, y ∈ R, we have −(−x) = x, 0 = −0, −(x + y) = −y − x
and x(−y) = −xy. Let R and S be two hyper nearrings. The map f : R → S is
called a homomorphism if for all x, y ∈ R, the following conditions hold: f(x+y) =
f(x) + f(y), f(x · y) = f(x) · f(y) and f(0) = 0. It is easy to see that if f is a
homomorphism, then f(−x) = −f(x), for all x ∈ R. A nonempty subset H of
a hyper nearring R is called a subhyper nearring if (H,+) is a subhypergroup of
(R,+), i.e., (1) a, b ∈ H implies a + b ⊆ H; (2) a ∈ H implies −a ∈ H; and (3)
(H, ·) is a subsemigroup of (R, ·). A subhypergroup A of the hypergroup (R,+) is
called normal if for all x ∈ R, we have x + A − x ⊆ A. Let H be a normal hyper
R-subgroup of hyper nearrring R. In [14], Heidari et al. defined the relation

x ∼ y(modH) if and only if (x− y) ∩H 6= ∅, for all x, y ∈ H.

This relation is a regular equivalence relation on R. Let ρ(x) be the equivalence
class of the element x ∈ H and denote the quotient set by R/H. Define the
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hyperoperation ⊕ and multiplication � on R/H by

ρ(a)⊕ ρ(b) = {ρ(c) : c ∈ ρ(a) + ρ(b)},
ρ(a)� ρ(b) = ρ(a · b),

for all a, b ∈ R. Let (R,+, ·) be a hyper nearring and τ a topology on R. Then,
we consider a topology τ∗ on P∗(R) which is generated by B = {SV : V ∈ τ},
where SV = {U ∈ P∗(R) : U ⊆ V,U ∈ τ}, V ∈ τ . In the following we consider
the product topology on R×R and the topology τ∗ on P∗(R) [2].

Definition 2. [2] Let (R,+, ·) be a hyper nearring and (R, τ) be a topological
space. Then, the system (R,+, ·, τ) is called a topological hyper nearring if

(1) the mapping (x, y) 7→ x+ y, from R×R to P∗(R),
(2) the mapping x 7→ −x, from R to R,
(3) the mapping (x, y) 7→ x.y, from R×R to R,
are continuous.

Example 1. [2] The hyper nearring R = ({0, a, b, c},+, ·) defined as follows:

+ 0 a b c

0 {0} {a} {b} {c}
a {a} {0, a} {b} {c}
b {b} {b} {0, a, c} {b, c}
c {c} {c} {b, c} {0, a, b}

· 0 a b c

0 0 a b c
a 0 a b c
b 0 a b c
c 0 a b c

Let τ = {∅, R, {0, a}}. Then(R,+, ·, τ) is a topological hyper nearrring.

Lemma 1. [2] Let (R,+, ·, τ) be a topological hyper nearring. If U is an open set
and a complete part of R, then for every c ∈ R, c+ U and U + c are open sets.

Definition 3. [24] A binary relation δ on P (X) is called a proximity on X if and
only if δ satisfies the following conditions:

(P1) AδB implies BδA,
(P2) AδB implies A 6= ∅,
(P3) A ∩B 6= ∅ implies AδB,
(P4) Aδ(B ∪ C) if and only if AδB or AδC,
(P5) A 6 δB implies there exists E ⊆ X such that A 6 δE and B 6 δEc.
The pair (X, δ) is called a proximity space. If the sets A,B ⊆ X are δ-related,

then we write AδB, otherwise we write A 6 δB.

Example 2. Let A,B ⊆ X and AδB if and only if A 6= ∅ and B 6= ∅. Then δ is a
proximity on X.

The following theorem shows a proximity relation δ on X induces a topology on
X.
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Theorem 1. [24] If a subset A of a proximity space (X, δ) is defined to be closed
if and only if xδA implies x ∈ A, then the collection of complements of all closed
sets so defined yields a topology τ = τ(δ) on X.

3. Some results on topological hyper nearrings

In this section, we present some results and properties in topological hyper near-
ring.

Lemma 2. Let (R,+, ·, τ) be a topological hyper nearring. Then, 0 ∈
⋃

R 6=U∈τ
U .

Proof. If 0 6∈
⋃

R 6=U∈τ
U , then for every R 6= U ∈ τ , 0 /∈ U . Let U ∈ τ , U 6= ∅

and 0 6= x ∈ U . By the continuity of the mapping +, there exist neighborhoods
V1, V2 ∈ τ of x and 0, respectively, such that V1+V2 ⊆ U . Hence, we conclude that
V2 = R and V1 + R ⊆ U . Hence, we have 0 ∈ x + (−x) ⊆ V1 + R ⊆ U and it is a
contradiction. Therefore, we have 0 ∈

⋃
R 6=U∈τ

U . �

Lemma 3. Let (R,+, ·, τ) be a topological hyper nearring such that every open
subset of it is a complete part of R. Let U be the system of all neighborhoods of 0,
then for any subset A of R,

A =
⋂
U∈U

(A+ U).

Proof. Suppose that x ∈ A and U ∈ U . x − U is an open neighborhood of x,
hence we have x − U ∩ A 6= ∅. Thus there exists a ∈ A such that a ∈ x − U . So,
x ∈ a+U ⊆ A+U , for all U ∈ U . Therefore, A ⊆

⋂
U∈U

(A+U). Now, let x ∈ A+U ,

for every U ∈ U and let V be a neighborhood of x. x− V is a neighborhood of 0,
hence x ∈ A + (x − V ). So, there exist a ∈ A and t ∈ x − V such that x ∈ a + t.
Thus a ∈ x− t ⊆ x+ V − x = V . Then A ∩ V 6= ∅ and this proves that x ∈ A and⋂
U∈U

(A+ U) ⊆ A. Therefore, A =
⋂
U∈U

(A+ U). �

Corollary 1. Let (R,+, ·, τ) be a topological hyper nearring such that every open
subset of it is a complete part of R and let U be the system of all neighborhoods of
0. Then,

(i) {0} =
⋂
U∈U

U ;

(ii) For every open set V and every closed set F such that V ∩ {0} 6= ∅ and
F ∩ {0} 6= ∅, we have {0} ⊆ V and {0} ⊆ F ;

(iii) {0} is dense in R if and only if R has trivial topology {∅, R}.

Proof. (i) It follows immediately from of Lemma 3.
(ii) Let V be open, V ∩ {0} 6= ∅ and t ∈ V ∩ {0} . V is a neighborhood of t and

t ∈ {0} , thus V is a neighborhood of 0 and by (i), {0} ⊆ V . Now, suppose that
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F is a closed subset and F ∩ {0} 6= ∅. Then, {0} 6⊆ F c. F c is open thus we have
{0} ∩ F c = ∅. Consequently, we get {0} ⊆ F .
(iii) Let {0} is dense in R and U be nonempty and open in R. Then, R = {0}

and by (ii) {0} ⊆ U . Therefore, R = U . �

Lemma 4. Let (R,+, ·, τ) be a topological hyper nearring such that every open
subset of it is a complete part of R. Then {0} is open if and only if τ is discrete.

Proof. It is straightforward. �

Theorem 2. Let (R,+, ·, τ) be a topological hyper nearring such that every open
subset of it is a complete part and H be a normal subhyper group of it. Then R/H
is discrete if and only if H is open.

Proof. Suppose that R/H is discrete and π is the natural mapping x 7→ π(x) =
H + x of R onto R/H. Then, the identity, π(0) of R/H is an isolated point. So,
π−1(π(0)) = H is open of R. Now, if H is open, since π is open, it follows that
π(H) is open. Hence the identity π(H) of R/H is an isolated point. Therefore, we
conclude that R/H is discrete. �

Theorem 3. Let (R,+, ·, τ) be a topological hyper nearring such that every open
subset of it is a complete part. Then, the following conditions are equivalent:

(1) R is a T0- space;
(2) {0} is closed.

Proof. (1⇒2) Let R be a T0- space and let x ∈ {0}. We prove that x = 0. If x 6= 0,
then by (1) there exists an open neighborhood U containing only 0 or x, but since
x ∈ {0}, hence U is a neighborhood of 0, such that x 6∈ U . So, x ∈ −U + x. By
Lemma 1, −U + x is an open neighborhood of x, such that 0 6∈ −U + x (Because if
0 ∈ −U + x, then there exists u ∈ U such that 0 ∈ −u + x. So, x = u + 0 ∈ U),
this is a contradiction. Thus, x = 0 and it follows that 0 is closed.
(2⇒1) Let {0} be closed and x, y ∈ R, x 6= y. We show that there exist an open

neighborhood U containing only x or y. If y = 0, since {0} is closed and x 6= 0,
then x is an interior point of R \ {0}. Hence, there exists a neighborhood U of x
such that 0 6∈ U . Now, if x 6= 0, y 6= 0 and x 6= y, then 0 6∈ x − y. Consequently,
by the previous part, for every t ∈ x− y there exists a neighborhood Ut of t, such
that 0 6∈ Ut. We consider U =

⋃
t∈x−y

Ut. Then x − y ⊆ U and 0 6∈ U .Thus U + y

is a neighborhood of x such that y 6∈ U + y (since 0 6∈ U). Therefore, R is a T0-
space. �

Let (X, τ) be a topological space. If f is a arbitrary mapping from X onto Y ,
then consider the family τf = {U : U ⊆ Y, f−1(U) ∈ τ}. Obviously τf is a
topology on Y .

Theorem 4. [25] Let f : (X, τ)→ (Y, τ ′) be a continuous function. Then τ ′ ≤ τf .
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Lemma 5. Let f : R→ R′ be a homomorphism of hyper nearrings. Then for every
subset A ⊆ R, f−1(f(A)) = kerf +A.

Proof. Let A ⊆ R and t ∈ f−1(f(A)). Then f(t) ∈ f(A) and it follows that there
exists a ∈ A such that f(t) = f(a). Thus 0 ∈ f(t)− f(a) = f(t− a). Hence there
exists x ∈ t−a such that f(x) = 0. Then x ∈ kerf . Thus t ∈ x+a ⊆ kerf +A and
this shows that f−1(f(A)) ⊆ kerf + A. It is obvious that kerf + A ⊆ f−1(f(A)).
Therefore, f−1(f(A)) = kerf +A. �
Theorem 5. Let (R,+, ·, τ) and (R′,+′, ·′, τ ′) be two topological hyper nearring
such that every open subset of them is a complete part and f from R onto R′ be a
homomorphism. Then (R′, τf ) is a topological hyper nearring.

Proof. We should show that +′, ·′ and inverse operation are continuous on (R′, τ ′).
Suppose that x′, y′ ∈ R′ and x′ +′ y′ ⊆ U ′ ∈ τf . Since f is onto, then there exist
x, y ∈ R′ such that f(x) = x′ and f(y) = y′. Hence f(x + y) = f(x) +′ f(y) =
x′ +′ y′ ⊆ U ′. So, x+ y ⊆ f−1(U ′) ∈ τ(since U ′ ∈ τf ). Since + is continuous, then
there exist neighborhoods Ux ∈ τ and Uy ∈ τ of elements x and y, respectively,
such that Ux + Uy ⊆ f−1(U ′). By Lemmas 1 and 5, f−1(f(Ux)) = kerf +′ Ux ∈ τ
and f−1(f(Uy)) ∈ τ . Hence f(Ux) ∈ τf and f(Uy) ∈ τf . Therefore, we obtain

f(Ux) +
′ f(Uy) = f(Ux + Uy) ⊆ f(f−1(U ′)) = U ′.

This completes the proof. �
Theorem 6. Let f from (R, τ) onto (R′, τ ′) be a homomorphism of topological
hyper nearrings. Then f : (R, τ)→ (R′, τf ) is continuous and open.

Proof. If U ∈ τf , by the definition of τf , f−1(U) ∈ τ . Thus, f is continuous.
Now, let U be an open subset in R. Then by Theorem 5 f−1(f(U)) = kerf + U is
open in (R, τ). Thus by the definition of τf , f(U) ∈ τf . This means f(U) is open
in R′. Therefore, f is open. �
Let R be a topological hyper nearring, H be normal hyper R-subgroup of R and

π be natural mapping of R onto R/H by x 7→ π(x) = H + x. Then, by Theorem
3.30 [2] (R/H, τπ) is a topological hyper nearring. It is called the quotient space of
topological hyper nearring R that we showed τπ by τ in [2].

Theorem 7. Let R be a T0-topological hyper nearring such that every open subset
of it is a complete part of R and H be a discrete subhypergroup of R. Then H is
closed.

Proof. Let x ∈ H. Since H is a discrete subhypergroup of R, then 0 ∈ H and
there exists an open neighborhood V of 0 such that V ∩H = {0}. By Lemma 1,
x − V is an open neighborhood of x. Therefore, x − V ∩H 6= ∅ (because x ∈ H).
Hence there exists h ∈ H such that h ∈ x − V and h ∈ x − v, for some v ∈ V .
Thus v ∈ −h + x ⊆ V ∩ H ⊆ V ∩H (let t ∈ V ∩ H and Ut is a neighborhood of
t. Ut ∩ V is an open neighborhood of t and since t ∈ H, then (Ut ∩ V ) ∩ H 6= ∅



1424 S. BORHANI-NEJAD, B. DAVVAZ

and Ut ∩ (V ∩ H) 6= ∅. It follows that t ∈ V ∩H and V ∩ H ⊆ V ∩H). Thus
v ∈ V ∩H = {0} = {0}(by Theorem 3) and it follows that x = h ∈ H and H is
closed. �

Theorem 8. Let R be a topological hyper nearring and H a dense subhypergroup
of R. If V is a neighborhood of 0 in H, then V is a neighborhood of 0 of R.

Proof. Since V is a neighborhood of 0 in H, it follows that there exists an open
neighborhood U of 0 in R such that U ∩H ⊆ V . Hence, we obtain U = U ∩ G =
U ∩H ⊆ U ∩H ⊆ V . Therefore, 0 is an interior point V and V is open in R. �

4. Topological hyper nearring derived from a proximity space

In this section, we define a proximity relation on an arbitrary hyper nearring and
prove that every hyper nearring with topology whose is induced by this proximity
relation is a topological hyper nearring. Also, we show that every topological hyper
nearring is a proximity space.

Theorem 9. Let (R,+, ·) be a hyper nearring, N be a normal subhypergroup of R
and A,B ⊆ R. We define AδB if and only if there exist a ∈ A and b ∈ B such that
−b+ a ⊆ N , then (R, δ) is a proximity space.

Proof. (P1) Suppose that AδB. Then, there exist a ∈ A and b ∈ B such that
−b+ a ⊆ N . So, we get −a+ b ⊆ −N = N . Therefore, BδA.
(P2) It is obvious.
(P3) Let there exists x ∈ A ∩ B 6= ∅. Then −x+ x ⊆ −x+N + x ⊆ N . So, we

conclude that AδB.
(P4) It is straightforward.
(P5) Let A 6 δB and E := B + N . If AδE = B + N , then there exist a ∈ A

and b ∈ B such that −(b + N) + a ⊆ N . Therefore, −N − b + a ⊆ N and this
implies that −b + a ⊆ N + N ⊆ N . Thus, AδB and it is a contradiction. Hence
A 6 δE. Also, B 6 δEc. If BδEc, then there exist b ∈ B and x ∈ (B +N)c such that
−x+ b ⊆ N . Therefore, x ∈ b+N ⊆ B +N and it is a contradiction. �

Theorem 10. In the proximity space (R, δ) that (R,+, ·) is a hyper nearring and
δ is defined relation in Theorem 9, the set β = {x+N : x ∈ R} is a base for the
topology τ = τ(δ).

Proof. Let U be an open subset of R and let y ∈ U . We should show that y+N ⊆ U .
Let t 6∈ U , then t ∈ U c and tδU c (since U c is closed). −y + t ⊆ −y + y + N ⊆
−y + N + y ⊆ N . Hence tδy and by (P4), yδU c. Thus y ∈ U c and it is a
contradiction. This implies that β is a base for the topology τ(δ). �

Lemma 6. The normal subhypergroup N of R is a clopen set in the topology τ(δ)
is defined in Theorem 10.
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Proof. By Theorem 10, N is open. Now, let xδN , for x ∈ R. Then there exists
n ∈ N such that −n+ x ⊆ N . Therefore x ∈ n− n+ x ⊆ n+N = N . Thus N is
a closed subset in R. �

Theorem 11. Let (R,+, ·) be a hyper nearring, the normal subhypergroup N be a
complete part of R and the relation δ is defined in Theorem 9. Then the system
(R,+, ·, τ(δ)) is a topological hyper nearring.

Proof. We should show that +, · and inverse operation are continuous. Suppose
that U is an open subset of R such that x+ y ⊆ U , for x, y ∈ R. Then by Theorem
10, there exists t ∈ R such that x + y ⊆ t + N ⊆ U . Therefore, x + N and
y +N are neighborhoods of x and y such that (x +N) + (y +N) = x + y +N ⊆
t+N+N = t+N ⊆ U . Thus + is continuous on R. Now, Suppose that U is an open
neighborhood of −x. By Theorem 10, there exists t ∈ R such that −x ∈ t+N ⊆ U .
Therefore, x ∈ −N − t = −t + N . Hence −t + N is a neighborhoods of x and
−(−t + N) = −N + t = N + t = t + N ⊆ U . This proves that inverse operation
is continuous. Now, we show that · is continuous. Suppose that U is an open
subset of R such that x · y ∈ U , for x, y ∈ R. Then there exist t ∈ R such that
x · y ∈ t + N ⊆ U( by Theorem10). x + N and y + N are neighborhoods of x
and y such that (x + N) · (y + N) ⊆ x · y + N (N is a complete part of R, then
x · y + N is a complete part of R. Hence (x + N) · (y + N) ⊆ x · y + N). So,
(x+N) · (y +N) ⊆ x · y +N ⊆ t+N +N = t+N ⊆ U . Thus · is continuous on
R. �

Example 3. Let R = {0, a, b} be a set with a hyperoperation + and a binary
operation · as follows:

+ 0 a b

0 {0} {a} {b}
a {a} {0} {b}
b {b} {b} {0, a}

· 0 a b

0 0 a b
a 0 a b
b 0 a b

Then, (R,+, ·) is a hyper nearring. We consider a normal subhyperring N =
{0, a} of R and define:

AδB if and only if there exist a ∈ A and b ∈ B such that −b+ a ⊆ N .
Therefore, τ(δ) = {∅, {0, a, b}, {0, a}, {b}}. Simply, we can show that (R,+, ·, τ(δ))

is a topological hyper nearring.

The following theorem, show that every topological hyper nearring is a proximity
space.
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Theorem 12. Let (R,+, ·, τ) be a topological hyper nearring such that every open
subset of it is a complete part of R. Then there exists a proximity relation δ such
that (R, δ) is a proximity space.

Proof. Let U be the system of symmetric neighborhoods at 0, for every A,B ⊆ R
and V ∈ U . We define
AδB if and only if A ∩B + V 6= ∅.
Now, we show that δ is a proximity relation.
(P1) Suppose that AδB. Then, there exist a ∈ A and b ∈ B such that a ∈ b+V .

Hence b ∈ a− V = a+ V ⊆ A+ V . Therefore, BδA.
(P2) It is obvious.
(P3) Let A∩B 6= ∅. Then, there exists x ∈ A∩B. Therefore, x ∈ A∩B+V 6= ∅.

Thus AδB.
(P4) It is straightforward..
(P5) Let A 6 δB and E := B + V . If AδB + V , then A ∩ (B + V ) + V 6= ∅.

Therefore A ∩ B + V 6= ∅ (since V is a complete part of R, then V + V ⊆ V ) and
this proves that AδB, that it is a contradiction. Hence A 6 δE. Also, if BδEc, it
follows that B ∩ (B + V )c + V 6= ∅. Hence there exist b ∈ B, x ∈ (B + V )c and
v ∈ V such that b ∈ x + v. Thus x ∈ b − v ⊆ B + V and it is a contradiction.
Therefore, B 6 δEc. �

5. Conclusion

In this paper we expressed the relationship between two important subjects:
algebraic hyperstructures and topology. We studied several characteristics of topo-
logical hyper nearrings and in the following, we related them to proximity spaces.
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