https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 69, Number 2, Pages 1418–1427 (2020) DOI: 10.31801/cfsuasmas.764635 ISSN 1303-5991 E-ISSN 2618-6470

Received by the editors: July 06, 2020; Accepted: September 21, 2020

ON PROXIMITY SPACES AND TOPOLOGICAL HYPER NEARRINGS

Somaye BORHANI-NEJAD and B. DAVVAZ

Department of Mathematics, Yazd University, Yazd, IRAN

ABSTRACT. In 1934 the concept of algebraic hyperstructures was first introduced by a French mathematician, Marty. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the result of this composition is a set. In this paper, we prove some results in topological hyper nearring. Then we present a proximity relation on an arbitrary hyper nearring and show that every hyper nearring with a topology that is induced by this proximity is a topological hyper nearring. In the following, we prove that every topological hyper nearring can be a proximity space.

1. INTRODUCTION

In 1934, the concept of hypergroups was first introduced by a French mathematician, Marty [22]. In the following, it was studied and extended by many researchers, namely, Corsini [3], Corsini and Leoreanu [4], Davvaz [6–8], Frenni [12], Koskas [20], Mittas [23], Vougiouklis, and others. The topological hyper nearring notion is defined and studied by Borhani and Davvaz in [2].

In the 1950's, Efremovič [10, 11], a Russian mathematician, gave the definition of proximity space, which he called infinitesimal space in a series of his papers. He axiomatically characterized the proximity relation A is near B for subsets A and B of any set X. The set X, together with this relation, was called an infinitesimal (proximity) space. Defining the closure of a subset A of X to be the collection of all points of X near A, Efremovič [10,11] showed that a topology can be introduced in a proximity space.

In this paper, we study some remarks on topological hyper nearring, then we

©2020 Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. Primary 16Y99; Secondary 20N20.

Keywords and phrases. Hyper nearring, topological hyper nearring, complete part, proximity relation.

[⊠] borhani.math@yahoo.com; davvaz@yazd.ac.ir-Corresponding author;

^{© 0000-0001-2345-6789;} X0000-0003-1941-5372.

define a proximity relation on hyper nearring and, we will prove that every hyper nearring with a topology that is induced by this proximity is a topological hyper nearring. In the following, we show that every topological hyper nearring is a proximity space.

2. Preliminaries

In this section, we recall some basic classical definitions of topology from [21] and definitions related to hyperstructures that are used in what follows.

Definition 1. [6] A hyper nearring is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

(1) (R, +) is a quasi canonical hypergroup, i.e., in (R, +) the following conditions hold:

- (i) x + (y + z) = (x + y) + z for all $x, y, z \in R$;
- (ii) There is $0 \in R$ such that x + 0 = 0 + x = x, for all $x \in R$;
- (iii) For any $x \in R$ there exists one and only one $x' \in R$ such that $0 \in x + x'$ (we shall write -x for x' and we call it the opposite of x);
- (iv) $z \in x + y$ implies $y \in -x + z$ and $x \in z y$.

If A and B are two non-empty subsets of R and $x \in R$, then we define:

$$A + B = \bigcup_{\substack{a \in A \\ b \in B}} a + b, \ x + A = \{x\} + AandA + x = A + \{x\}.$$

(2) (R, \cdot) is a semigroup respect to the multiplication, having 0 as a left absorbing element, i.e., $x \cdot 0 = 0$ for all $x \in R$. But, in general, $0 \cdot x \neq 0$ for some $x \in R$.

(3) The multiplication is left distributive with respect to the hyperoperation +, i.e., $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

Note that for all $x, y \in R$, we have -(-x) = x, 0 = -0, -(x + y) = -y - xand x(-y) = -xy. Let R and S be two hyper nearrings. The map $f: R \to S$ is called a homomorphism if for all $x, y \in R$, the following conditions hold: f(x+y) = $f(x) + f(y), f(x \cdot y) = f(x) \cdot f(y)$ and f(0) = 0. It is easy to see that if f is a homomorphism, then f(-x) = -f(x), for all $x \in R$. A nonempty subset H of a hyper nearring R is called a *subhyper nearring* if (H, +) is a subhypergroup of (R, +), i.e., (1) $a, b \in H$ implies $a + b \subseteq H$; (2) $a \in H$ implies $-a \in H$; and (3) (H, \cdot) is a subsemigroup of (R, \cdot) . A subhypergroup A of the hypergroup (R, +) is called *normal* if for all $x \in R$, we have $x + A - x \subseteq A$. Let H be a normal hyper R-subgroup of hyper nearring R. In [14], Heidari et al. defined the relation

 $x \sim y \pmod{H}$ if and only if $(x - y) \cap H \neq \emptyset$, for all $x, y \in H$.

This relation is a regular equivalence relation on R. Let $\rho(x)$ be the equivalence class of the element $x \in H$ and denote the quotient set by R/H. Define the hyperoperation \oplus and multiplication \odot on R/H by

$$\rho(a) \oplus \rho(b) = \{\rho(c) : c \in \rho(a) + \rho(b)\},\$$

$$\rho(a) \odot \rho(b) = \rho(a \cdot b),$$

for all $a, b \in R$. Let $(R, +, \cdot)$ be a hyper nearring and τ a topology on R. Then, we consider a topology τ^* on $\mathcal{P}^*(R)$ which is generated by $\mathcal{B} = \{S_V : V \in \tau\}$, where $S_V = \{U \in \mathcal{P}^*(R) : U \subseteq V, U \in \tau\}, V \in \tau$. In the following we consider the product topology on $R \times R$ and the topology τ^* on $\mathcal{P}^*(R)$ [2].

Definition 2. [2] Let $(R, +, \cdot)$ be a hyper nearring and (R, τ) be a topological space. Then, the system $(R, +, \cdot, \tau)$ is called a *topological hyper nearring* if

- (1) the mapping $(x, y) \mapsto x + y$, from $R \times R$ to $\mathcal{P}^*(R)$,
- (2) the mapping $x \mapsto -x$, from R to R,
- (3) the mapping $(x, y) \mapsto x.y$, from $R \times R$ to R,

are continuous.

EXAMPLE 1. [2] The hyper nearring $R = (\{0, a, b, c\}, +, \cdot)$ defined as follows:

+	0	a	b	c	•	0	a	b	c
0	{0}	$\{a\}$	$\{b\}$	$\{c\}$	0	0	a	b	c
a	$\{a\}$	$\{0,a\}$	$\left\{b\right\}$	$\{c\}$		0			
b	$\{b\}$	$\{b\}$	$\{0, a, c\}$	$\{b,c\}$	b	0	a	b	c
c	$\{c\}$	$\{c\}$	$\{b, c\}$	$\{0, a, b\}$	c	0	a	b	c

Let $\tau = \{ \emptyset, R, \{0, a\} \}$. Then $(R, +, \cdot, \tau)$ is a topological hyper nearring.

Lemma 1. [2] Let $(R, +, \cdot, \tau)$ be a topological hyper nearring. If U is an open set and a complete part of R, then for every $c \in R$, c + U and U + c are open sets.

Definition 3. [24] A binary relation δ on P(X) is called a *proximity* on X if and only if δ satisfies the following conditions:

- (P1) $A\delta B$ implies $B\delta A$,
- (P2) $A\delta B$ implies $A \neq \emptyset$,
- (P3) $A \cap B \neq \emptyset$ implies $A\delta B$,
- (P4) $A\delta(B \cup C)$ if and only if $A\delta B$ or $A\delta C$,
- (P5) A βB implies there exists $E \subseteq X$ such that A βE and B βE^c .

The pair (X, δ) is called a *proximity space*. If the sets $A, B \subseteq X$ are δ -related, then we write $A\delta B$, otherwise we write $A \delta B$.

EXAMPLE 2. Let $A, B \subseteq X$ and $A\delta B$ if and only if $A \neq \emptyset$ and $B \neq \emptyset$. Then δ is a *proximity* on X.

The following theorem shows a proximity relation δ on X induces a topology on X.

Theorem 1. [24] If a subset A of a proximity space (X, δ) is defined to be closed if and only if $x\delta A$ implies $x \in A$, then the collection of complements of all closed sets so defined yields a topology $\tau = \tau(\delta)$ on X.

3. Some results on topological hyper nearnings

In this section, we present some results and properties in topological hyper nearring.

Lemma 2. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring. Then, $0 \in \bigcup_{R \neq U \in \tau} U$.

Proof. If $0 \notin \bigcup_{\substack{R \neq U \in \tau}} U$, then for every $R \neq U \in \tau$, $0 \notin U$. Let $U \in \tau$, $U \neq \emptyset$ and $0 \neq x \in U$. By the continuity of the mapping +, there exist neighborhoods $V_1, V_2 \in \tau$ of x and 0, respectively, such that $V_1 + V_2 \subseteq U$. Hence, we conclude that $V_2 = R$ and $V_1 + R \subseteq U$. Hence, we have $0 \in x + (-x) \subseteq V_1 + R \subseteq U$ and it is a contradiction. Therefore, we have $0 \in \bigcup_{\substack{R \neq U \in \tau}} U$.

Lemma 3. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R. Let \mathcal{U} be the system of all neighborhoods of 0, then for any subset A of R,

$$\overline{A} = \bigcap_{U \in \mathcal{U}} (A + U).$$

Proof. Suppose that $x \in \overline{A}$ and $U \in \mathcal{U}$. x - U is an open neighborhood of x, hence we have $x - U \cap A \neq \emptyset$. Thus there exists $a \in A$ such that $a \in x - U$. So, $x \in a + U \subseteq A + U$, for all $U \in \mathcal{U}$. Therefore, $\overline{A} \subseteq \bigcap_{U \in \mathcal{U}} (A + U)$. Now, let $x \in A + U$,

for every $U \in \mathcal{U}$ and let V be a neighborhood of x. x - V is a neighborhood of 0, hence $x \in A + (x - V)$. So, there exist $a \in A$ and $t \in x - V$ such that $x \in a + t$. Thus $a \in x - t \subseteq x + V - x = V$. Then $A \cap V \neq \emptyset$ and this proves that $x \in \overline{A}$ and $\bigcap_{U \in \mathcal{U}} (A + U) \subseteq \overline{A}$. Therefore, $\overline{A} = \bigcap_{U \in \mathcal{U}} (A + U)$.

Corollary 1. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R and let \mathcal{U} be the system of all neighborhoods of 0. Then,

- (i) $\overline{\{0\}} = \bigcap_{U \in \mathcal{U}} U;$
- (ii) For every open set V and every closed set F such that $V \cap \overline{\{0\}} \neq \emptyset$ and $F \cap \overline{\{0\}} \neq \emptyset$, we have $\overline{\{0\}} \subseteq V$ and $\overline{\{0\}} \subseteq F$;
- (iii) $\{0\}$ is dense in R if and only if R has trivial topology $\{\emptyset, R\}$.

Proof. (i) It follows immediately from of Lemma 3.

(ii) Let V be open, $V \cap \overline{\{0\}} \neq \emptyset$ and $t \in V \cap \overline{\{0\}}$. V is a neighborhood of t and $t \in \overline{\{0\}}$, thus V is a neighborhood of 0 and by (i), $\overline{\{0\}} \subseteq V$. Now, suppose that

F is a closed subset and $F \cap \overline{\{0\}} \neq \emptyset$. Then, $\overline{\{0\}} \not\subseteq F^c$. F^c is open thus we have $\overline{\{0\}} \cap F^c = \emptyset$. Consequently, we get $\overline{\{0\}} \subseteq F$.

(iii) Let $\{0\}$ is dense in R and U be nonempty and open in R. Then, $R = \overline{\{0\}}$ and by $(ii) \overline{\{0\}} \subseteq U$. Therefore, R = U.

Lemma 4. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R. Then $\{0\}$ is open if and only if τ is discrete.

Proof. It is straightforward.

Theorem 2. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part and H be a normal subhyper group of it. Then R/His discrete if and only if H is open.

Proof. Suppose that R/H is discrete and π is the natural mapping $x \mapsto \pi(x) = H + x$ of R onto R/H. Then, the identity, $\pi(0)$ of R/H is an isolated point. So, $\pi^{-1}(\pi(0)) = H$ is open of R. Now, if H is open, since π is open, it follows that $\pi(H)$ is open. Hence the identity $\pi(H)$ of R/H is an isolated point. Therefore, we conclude that R/H is discrete.

Theorem 3. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part. Then, the following conditions are equivalent:

- (1) R is a T_0 space;
- (2) $\{0\}$ is closed.

Proof. $(1\Rightarrow 2)$ Let R be a T_0 - space and let $x \in \overline{\{0\}}$. We prove that x = 0. If $x \neq 0$, then by (1) there exists an open neighborhood U containing only 0 or x, but since $x \in \overline{\{0\}}$, hence U is a neighborhood of 0, such that $x \notin U$. So, $x \in -U + x$. By Lemma 1, -U + x is an open neighborhood of x, such that $0 \notin -U + x$ (Because if $0 \in -U + x$, then there exists $u \in U$ such that $0 \in -u + x$. So, $x = u + 0 \in U$), this is a contradiction. Thus, x = 0 and it follows that 0 is closed.

 $(2\Rightarrow 1)$ Let $\{0\}$ be closed and $x, y \in R, x \neq y$. We show that there exist an open neighborhood U containing only x or y. If y = 0, since $\{0\}$ is closed and $x \neq 0$, then x is an interior point of $R \setminus \{0\}$. Hence, there exists a neighborhood U of xsuch that $0 \notin U$. Now, if $x \neq 0, y \neq 0$ and $x \neq y$, then $0 \notin x - y$. Consequently, by the previous part, for every $t \in x - y$ there exists a neighborhood U_t of t, such that $0 \notin U_t$. We consider $U = \bigcup_{t \in x - y} U_t$. Then $x - y \subseteq U$ and $0 \notin U$. Thus U + yis a neighborhood of x such that $y \notin U + y$ (since $0 \notin U$). Therefore, R is a T_0 space.

Let (X, τ) be a topological space. If f is a arbitrary mapping from X onto Y, then consider the family $\tau_f = \{U : U \subseteq Y, f^{-1}(U) \in \tau\}$. Obviously τ_f is a topology on Y.

Theorem 4. [25] Let $f: (X, \tau) \to (Y, \tau')$ be a continuous function. Then $\tau' \leq \tau_f$.

Lemma 5. Let $f : R \to R'$ be a homomorphism of hyper nearrings. Then for every subset $A \subseteq R$, $f^{-1}(f(A)) = kerf + A$.

Proof. Let $A \subseteq R$ and $t \in f^{-1}(f(A))$. Then $f(t) \in f(A)$ and it follows that there exists $a \in A$ such that f(t) = f(a). Thus $0 \in f(t) - f(a) = f(t-a)$. Hence there exists $x \in t-a$ such that f(x) = 0. Then $x \in kerf$. Thus $t \in x+a \subseteq kerf+A$ and this shows that $f^{-1}(f(A)) \subseteq kerf + A$. It is obvious that $kerf + A \subseteq f^{-1}(f(A))$. Therefore, $f^{-1}(f(A)) = kerf + A$.

Theorem 5. Let $(R, +, \cdot, \tau)$ and $(R', +', \cdot', \tau')$ be two topological hyper nearring such that every open subset of them is a complete part and f from R onto R' be a homomorphism. Then (R', τ_f) is a topological hyper nearring.

Proof. We should show that $+', \cdot'$ and inverse operation are continuous on (R', τ') . Suppose that $x', y' \in R'$ and $x' + y' \subseteq U' \in \tau_f$. Since f is onto, then there exist $x, y \in R'$ such that f(x) = x' and f(y) = y'. Hence $f(x + y) = f(x) + f(y) = x' + y' \subseteq U'$. So, $x + y \subseteq f^{-1}(U') \in \tau$ (since $U' \in \tau_f$). Since + is continuous, then there exist neighborhoods $U_x \in \tau$ and $U_y \in \tau$ of elements x and y, respectively, such that $U_x + U_y \subseteq f^{-1}(U')$. By Lemmas 1 and 5, $f^{-1}(f(U_x)) = \ker f + U_x \in \tau$ and $f^{-1}(f(U_y)) \in \tau$. Hence $f(U_x) \in \tau_f$ and $f(U_y) \in \tau_f$. Therefore, we obtain

$$f(U_x) + f(U_y) = f(U_x + U_y) \subseteq f(f^{-1}(U')) = U'.$$

This completes the proof.

Theorem 6. Let f from (R, τ) onto (R', τ') be a homomorphism of topological hyper nearrings. Then $f: (R, \tau) \to (R', \tau_f)$ is continuous and open.

Proof. If $U \in \tau_f$, by the definition of τ_f , $f^{-1}(U) \in \tau$. Thus, f is continuous. Now, let U be an open subset in R. Then by Theorem 5 $f^{-1}(f(U)) = kerf + U$ is open in (R, τ) . Thus by the definition of τ_f , $f(U) \in \tau_f$. This means f(U) is open in R'. Therefore, f is open.

Let R be a topological hyper nearring, H be normal hyper R-subgroup of R and π be natural mapping of R onto R/H by $x \mapsto \pi(x) = H + x$. Then, by Theorem 3.30 [2] $(R/H, \tau_{\pi})$ is a topological hyper nearring. It is called the quotient space of topological hyper nearring R that we showed τ_{π} by $\overline{\tau}$ in [2].

Theorem 7. Let R be a T_0 -topological hyper nearring such that every open subset of it is a complete part of R and H be a discrete subhypergroup of R. Then H is closed.

Proof. Let $x \in \overline{H}$. Since H is a discrete subhypergroup of R, then $0 \in H$ and there exists an open neighborhood V of 0 such that $V \cap H = \{0\}$. By Lemma 1, x - V is an open neighborhood of x. Therefore, $x - V \cap H \neq \emptyset$ (because $x \in \overline{H}$). Hence there exists $h \in H$ such that $h \in x - V$ and $h \in x - v$, for some $v \in V$. Thus $v \in -h + x \subseteq V \cap \overline{H} \subseteq \overline{V \cap H}$ (let $t \in V \cap \overline{H}$ and U_t is a neighborhood of t. $U_t \cap V$ is an open neighborhood of t and since $t \in \overline{H}$, then $(U_t \cap V) \cap H \neq \emptyset$

and $U_t \cap (V \cap H) \neq \emptyset$. It follows that $t \in \overline{V \cap H}$ and $V \cap \overline{H} \subseteq \overline{V \cap H}$). Thus $v \in \overline{V \cap H} = \overline{\{0\}} = \{0\}$ (by Theorem 3) and it follows that $x = h \in H$ and H is closed.

Theorem 8. Let R be a topological hyper nearring and H a dense subhypergroup of R. If V is a neighborhood of 0 in H, then \overline{V} is a neighborhood of 0 of R.

Proof. Since V is a neighborhood of 0 in H, it follows that there exists an open neighborhood U of 0 in R such that $U \cap H \subseteq V$. Hence, we obtain $U = U \cap G = U \cap \overline{H} \subseteq \overline{U \cap H} \subseteq \overline{V}$. Therefore, 0 is an interior point \overline{V} and \overline{V} is open in R. \Box

4. TOPOLOGICAL HYPER NEARRING DERIVED FROM A PROXIMITY SPACE

In this section, we define a proximity relation on an arbitrary hyper nearring and prove that every hyper nearring with topology whose is induced by this proximity relation is a topological hyper nearring. Also, we show that every topological hyper nearring is a proximity space.

Theorem 9. Let $(R, +, \cdot)$ be a hyper nearring, N be a normal subhypergroup of R and $A, B \subseteq R$. We define $A\delta B$ if and only if there exist $a \in A$ and $b \in B$ such that $-b + a \subseteq N$, then (R, δ) is a proximity space.

Proof. (P_1) Suppose that $A\delta B$. Then, there exist $a \in A$ and $b \in B$ such that $-b + a \subseteq N$. So, we get $-a + b \subseteq -N = N$. Therefore, $B\delta A$.

 (P_2) It is obvious.

 (P_3) Let there exists $x \in A \cap B \neq \emptyset$. Then $-x + x \subseteq -x + N + x \subseteq N$. So, we conclude that $A\delta B$.

 (P_4) It is straightforward.

(P₅) Let $A \not \delta B$ and E := B + N. If $A\delta E = B + N$, then there exist $a \in A$ and $b \in B$ such that $-(b + N) + a \subseteq N$. Therefore, $-N - b + a \subseteq N$ and this implies that $-b + a \subseteq N + N \subseteq N$. Thus, $A\delta B$ and it is a contradiction. Hence $A \not \delta E$. Also, $B \not \delta E^c$. If $B\delta E^c$, then there exist $b \in B$ and $x \in (B + N)^c$ such that $-x + b \subseteq N$. Therefore, $x \in b + N \subseteq B + N$ and it is a contradiction. \Box

Theorem 10. In the proximity space (R, δ) that $(R, +, \cdot)$ is a hyper nearring and δ is defined relation in Theorem 9, the set $\beta = \{x + N : x \in R\}$ is a base for the topology $\tau = \tau(\delta)$.

Proof. Let U be an open subset of R and let $y \in U$. We should show that $y+N \subseteq U$. Let $t \notin U$, then $t \in U^c$ and $t\delta U^c$ (since U^c is closed). $-y+t \subseteq -y+y+N \subseteq -y+N+y \subseteq N$. Hence $t\delta y$ and by (P4), $y\delta U^c$. Thus $y \in U^c$ and it is a contradiction. This implies that β is a base for the topology $\tau(\delta)$.

Lemma 6. The normal subhypergroup N of R is a clopen set in the topology $\tau(\delta)$ is defined in Theorem 10.

Proof. By Theorem 10, N is open. Now, let $x\delta N$, for $x \in R$. Then there exists $n \in N$ such that $-n + x \subseteq N$. Therefore $x \in n - n + x \subseteq n + N = N$. Thus N is a closed subset in R.

Theorem 11. Let $(R, +, \cdot)$ be a hyper nearring, the normal subhypergroup N be a complete part of R and the relation δ is defined in Theorem 9. Then the system $(R, +, \cdot, \tau(\delta))$ is a topological hyper nearring.

Proof. We should show that $+, \cdot$ and inverse operation are continuous. Suppose that U is an open subset of R such that $x + y \subseteq U$, for $x, y \in R$. Then by Theorem 10, there exists $t \in R$ such that $x + y \subseteq t + N \subseteq U$. Therefore, x + N and y + N are neighborhoods of x and y such that $(x + N) + (y + N) = x + y + N \subseteq$ $t+N+N=t+N\subseteq U$. Thus + is continuous on R. Now, Suppose that U is an open neighborhood of -x. By Theorem 10, there exists $t \in R$ such that $-x \in t + N \subset U$. Therefore, $x \in -N - t = -t + N$. Hence -t + N is a neighborhoods of x and $-(-t+N) = -N + t = N + t = t + N \subseteq U$. This proves that inverse operation is continuous. Now, we show that \cdot is continuous. Suppose that U is an open subset of R such that $x \cdot y \in U$, for $x, y \in R$. Then there exist $t \in R$ such that $x \cdot y \in t + N \subset U($ by Theorem10). x + N and y + N are neighborhoods of x and y such that $(x + N) \cdot (y + N) \subseteq x \cdot y + N$ (N is a complete part of R, then $x \cdot y + N$ is a complete part of R. Hence $(x + N) \cdot (y + N) \subseteq x \cdot y + N$. So, $(x+N) \cdot (y+N) \subseteq x \cdot y + N \subseteq t + N + N = t + N \subseteq U$. Thus \cdot is continuous on R.

EXAMPLE 3. Let $R = \{0, a, b\}$ be a set with a hyperoperation + and a binary operation \cdot as follows:

			b	•	0	a	b
0	{0}	$\{a\}$	$\{b\} \\ \{b\} \\ \{0, a\}$	0	0	a	b
a	$\{a\}$	{0}	$\{b\}$			a	
b	$\{b\}$	$\{b\}$	$\{0,a\}$	b	0	a	b

Then, $(R, +, \cdot)$ is a hyper nearring. We consider a normal subhyperring $N = \{0, a\}$ of R and define:

 $A\delta B$ if and only if there exist $a \in A$ and $b \in B$ such that $-b + a \subseteq N$.

Therefore, $\tau(\delta) = \{ \emptyset, \{0, a, b\}, \{0, a\}, \{b\} \}$. Simply, we can show that $(R, +, \cdot, \tau(\delta))$ is a topological hyper nearring.

The following theorem, show that every topological hyper nearring is a proximity space.

Theorem 12. Let $(R, +, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R. Then there exists a proximity relation δ such that (R, δ) is a proximity space.

Proof. Let \mathcal{U} be the system of symmetric neighborhoods at 0, for every $A, B \subseteq R$ and $V \in \mathcal{U}$. We define

 $A\delta B$ if and only if $A \cap B + V \neq \emptyset$.

Now, we show that δ is a proximity relation.

 (P_1) Suppose that $A\delta B$. Then, there exist $a \in A$ and $b \in B$ such that $a \in b + V$. Hence $b \in a - V = a + V \subseteq A + V$. Therefore, $B\delta A$.

 (P_2) It is obvious.

 (P_3) Let $A \cap B \neq \emptyset$. Then, there exists $x \in A \cap B$. Therefore, $x \in A \cap B + V \neq \emptyset$. Thus $A\delta B$.

 (P_4) It is straightforward..

(P₅) Let $A \ \delta B$ and E := B + V. If $A\delta B + V$, then $A \cap (B + V) + V \neq \emptyset$. Therefore $A \cap B + V \neq \emptyset$ (since V is a complete part of R, then $V + V \subseteq V$) and this proves that $A\delta B$, that it is a contradiction. Hence $A \ \delta E$. Also, if $B\delta E^c$, it follows that $B \cap (B + V)^c + V \neq \emptyset$. Hence there exist $b \in B$, $x \in (B + V)^c$ and $v \in V$ such that $b \in x + v$. Thus $x \in b - v \subseteq B + V$ and it is a contradiction. Therefore, $B \ \delta E^c$.

5. Conclusion

In this paper we expressed the relationship between two important subjects: algebraic hyperstructures and topology. We studied several characteristics of topological hyper nearrings and in the following, we related them to proximity spaces.

References

- Ameri, R., Topological (transposition) hypergroups, Italian Journal of Pure and Applied Mathematics, (13) (2003), 181-186.
- [2] Borhani-Nejad, S., Davvaz, B., Topological hyper nearrings, submitted.
- [3] Corsini, P., Prolegomena of Hypergroup Theory, Second ed., Aviani Editore, Tricesimo, Italy, 1993.
- [4] Corsini, P., Leoreanu, V., Applications of Hypergroup Theory, Kluwer Academic Publishers, 2003.
- [5] Dasic, V., Hypernearrings, Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991), 75-85.
- [6] Davvaz, B., Hypernearrings and weak hypernearrings, 11th Algebra Seminar of Iranian Math. Soc. Isfahan University of Technology, Isfahan, October 27-29, (1999), 68-78.
- [7] Davvaz, B., Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
- [8] Davvaz, B., Semihypergroup Theory, Elsevier, 2016.
- [9] Davvaz, B., Leoreanu-Fotea, V., Hyperring Theory and Applications, International Academic Press, 115, Palm Harber, USA, 2007.
- [10] Efremovč, V.A., The geometry of proximity, Mat. Sb., 31 (1952), 189-200.
- [11] Efremovič, V.A., Infinitesimal spaces, Doklady Akademii Nauk SSSR (N.S.), (in Russian), 76 (1951), 341-343.

- [12] Freni, D., A note on the core of a hypergroup and the transitive closure β^* of β , *Riv. Mat. Pura Appl.*, 8 (1991), 153-156.
- [13] Gontineac, V.M., On hypernear-rings and H-hypergroups, Fifth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1993), Hadronic Press, Inc., USA, (1994), 171-179.
- [14] Heidari, D., Davvaz, B., Modarres, S.M.A., Topological hypergroups in the sense of Marty, *Comm. algebra*, 42 (2014), 4712-4721.
- [15] Heidari, D., Davvaz, B., Modarres, S.M.S., Topological polygroups, Bull. Malays. Math. Sci. Soc., 3942 (2016), 707-721.
- [16] Hošková-Mayerová, S., Topological hypergroupoids, Comput. Math. Appl., 64(9) (2012), 2845-2849.
- [17] Jancic-Rašovic S., Cristea, I., Division hypernear-rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 26(3) (2018), 109-126.
- [18] Jancic-Rašovic S., Cristea, I., Hypernear-rings with a defect of distributivity, *Filomat*, 32(4) (2018), 1133-1149.
- [19] Kim, K.H., Davvaz, B., Roh, E.H., On Hyper *R*-subgroups of hypernear-rings, *Scientiae Mathematicae Japonicae*, Online (2007), 649-656.
- [20] Koskas, M., Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl., 49(9) (1970), 155-192.
- [21] Munkres, J.R., Topology, Prentice Hall, Upper Saddle River, NJ, 2000.
- [22] Marty, F., Sur une generalization de la notion de group, 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
- [23] Mittas, J., Hypergroups canoniques, Math. Balkanica, 2 (1972), 165-179.
- [24] Naimpally S.A., Warrack, B.D., Proximity Spaces, Cambridge Tract, 1970.
- [25] Ursul, M., Topological rings satisfying compactness conditions, Springer Science Business Media (2002), vol 549.