https://communications.science.ankara.edu.tr

ON PROXIMITY SPACES AND TOPOLOGICAL HYPER NEARRINGS

Somaye BORHANI-NEJAD and B. DAVVAZ
Department of Mathematics, Yazd University, Yazd, IRAN

Abstract

In 1934 the concept of algebraic hyperstructures was first introduced by a French mathematician, Marty. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the result of this composition is a set. In this paper, we prove some results in topological hyper nearring. Then we present a proximity relation on an arbitrary hyper nearring and show that every hyper nearring with a topology that is induced by this proximity is a topological hyper nearring. In the following, we prove that every topological hyper nearring can be a proximity space.

1. Introduction

In 1934, the concept of hypergroups was first introduced by a French mathematician, Marty 22 . In the following, it was studied and extended by many researchers, namely, Corsini [3], Corsini and Leoreanu 4], Davvaz [6] 8], Frenni 12], Koskas 20], Mittas [23], Vougiouklis, and others. The topological hyper nearring notion is defined and studied by Borhani and Davvaz in [2].
In the 1950's, Efremovič 10,11 , a Russian mathematician, gave the definition of proximity space, which he called infinitesimal space in a series of his papers. He axiomatically characterized the proximity relation A is near B for subsets A and B of any set X. The set X, together with this relation, was called an infinitesimal (proximity) space. Defining the closure of a subset A of X to be the collection of all points of X near A, Efremovič 10,11 showed that a topology can be introduced in a proximity space.

In this paper, we study some remarks on topological hyper nearring, then we

[^0]define a proximity relation on hyper nearring and, we will prove that every hyper nearring with a topology that is induced by this proximity is a topological hyper nearring. In the following, we show that every topological hyper nearring is a proximity space.

2. Preliminaries

In this section, we recall some basic classical definitions of topology from 21 and definitions related to hyperstructures that are used in what follows.

Definition 1. [6] A hyper nearring is an algebraic structure $(R,+, \cdot)$ which satisfies the following axioms:
$(1)(R,+)$ is a quasi canonical hypergroup, i.e., in $(R,+)$ the following conditions hold:
(i) $x+(y+z)=(x+y)+z$ for all $x, y, z \in R$;
(ii) There is $0 \in R$ such that $x+0=0+x=x$, for all $x \in R$;
(iii) For any $x \in R$ there exists one and only one $x^{\prime} \in R$ such that $0 \in x+x^{\prime}$ (we shall write $-x$ for x^{\prime} and we call it the opposite of x);
(iv) $z \in x+y$ implies $y \in-x+z$ and $x \in z-y$.

If A and B are two non-empty subsets of R and $x \in R$, then we define:

$$
A+B=\bigcup_{\substack{a \in A \\ b \in B}} a+b, x+A=\{x\}+\text { Aand } A+x=A+\{x\}
$$

(2) (R, \cdot) is a semigroup respect to the multiplication, having 0 as a left absorbing element, i.e., $x \cdot 0=0$ for all $x \in R$. But, in general, $0 \cdot x \neq 0$ for some $x \in R$.
(3) The multiplication is left distributive with respect to the hyperoperation + , i.e., $x \cdot(y+z)=x \cdot y+x \cdot z$ for all $x, y, z \in R$.

Note that for all $x, y \in R$, we have $-(-x)=x, 0=-0,-(x+y)=-y-x$ and $x(-y)=-x y$. Let R and S be two hyper nearrings. The map $f: R \rightarrow S$ is called a homomorphism if for all $x, y \in R$, the following conditions hold: $f(x+y)=$ $f(x)+f(y), f(x \cdot y)=f(x) \cdot f(y)$ and $f(0)=0$. It is easy to see that if f is a homomorphism, then $f(-x)=-f(x)$, for all $x \in R$. A nonempty subset H of a hyper nearring R is called a subhyper nearring if $(H,+)$ is a subhypergroup of ($R,+$), i.e., (1) $a, b \in H$ implies $a+b \subseteq H$; (2) $a \in H$ implies $-a \in H$; and (3) (H, \cdot) is a subsemigroup of (R, \cdot). A subhypergroup A of the hypergroup $(R,+)$ is called normal if for all $x \in R$, we have $x+A-x \subseteq A$. Let H be a normal hyper R-subgroup of hyper nearrring R. In [14], Heidari et al. defined the relation

$$
x \sim y(\bmod H) \text { if and only if }(x-y) \cap H \neq \emptyset, \text { for all } x, y \in H
$$

This relation is a regular equivalence relation on R. Let $\rho(x)$ be the equivalence class of the element $x \in H$ and denote the quotient set by R / H. Define the
hyperoperation \oplus and multiplication \odot on R / H by

$$
\begin{aligned}
\rho(a) \oplus \rho(b) & =\{\rho(c): c \in \rho(a)+\rho(b)\} \\
\rho(a) \odot \rho(b) & =\rho(a \cdot b)
\end{aligned}
$$

for all $a, b \in R$. Let $(R,+, \cdot)$ be a hyper nearring and τ a topology on R. Then, we consider a topology τ^{*} on $\mathcal{P}^{*}(R)$ which is generated by $\mathcal{B}=\left\{S_{V}: V \in \tau\right\}$, where $S_{V}=\left\{U \in \mathcal{P}^{*}(R): U \subseteq V, U \in \tau\right\}, V \in \tau$. In the following we consider the product topology on $R \times R$ and the topology τ^{*} on $\mathcal{P}^{*}(R)$ [2].
Definition 2. 2 Let $(R,+, \cdot)$ be a hyper nearring and (R, τ) be a topological space. Then, the system $(R,+, \cdot, \tau)$ is called a topological hyper nearring if
(1) the mapping $(x, y) \mapsto x+y$, from $R \times R$ to $\mathcal{P}^{*}(R)$,
(2) the mapping $x \mapsto-x$, from R to R,
(3) the mapping $(x, y) \mapsto x . y$, from $R \times R$ to R,
are continuous.
Example 1. 2 The hyper nearring $R=(\{0, a, b, c\},+, \cdot)$ defined as follows:

+	0	a	b	c
0	$\{0\}$	$\{a\}$	$\{b\}$	$\{c\}$
a	$\{a\}$	$\{0, a\}$	$\{b\}$	$\{c\}$
b	$\{b\}$	$\{b\}$	$\{0, a, c\}$	$\{b, c\}$
c	$\{c\}$	$\{c\}$	$\{b, c\}$	$\{0, a, b\}$

\cdot	0	a	b	c
0	0	a	b	c
a	0	a	b	c
b	0	a	b	c
c	0	a	b	c

Let $\tau=\{\varnothing, R,\{0, a\}\}$. Then $(R,+, \cdot, \tau)$ is a topological hyper nearrring.
Lemma 1. [2] Let $(R,+, \cdot, \tau)$ be a topological hyper nearring. If U is an open set and a complete part of R, then for every $c \in R, c+U$ and $U+c$ are open sets.
Definition 3. 24 A binary relation δ on $P(X)$ is called a proximity on X if and only if δ satisfies the following conditions:
(P1) $A \delta B$ implies $B \delta A$,
(P2) $A \delta B$ implies $A \neq \emptyset$,
(P3) $A \cap B \neq \emptyset$ implies $A \delta B$,
(P4) $A \delta(B \cup C)$ if and only if $A \delta B$ or $A \delta C$,
(P5) $A \delta B$ implies there exists $E \subseteq X$ such that $A \delta E$ and $B \delta E^{c}$.
The pair (X, δ) is called a proximity space. If the sets $A, B \subseteq X$ are δ-related, then we write $A \delta B$, otherwise we write $A \delta B$.

Example 2. Let $A, B \subseteq X$ and $A \delta B$ if and only if $A \neq \emptyset$ and $B \neq \emptyset$. Then δ is a proximity on X.

The following theorem shows a proximity relation δ on X induces a topology on X.

Theorem 1. 24] If a subset A of a proximity space (X, δ) is defined to be closed if and only if $x \delta A$ implies $x \in A$, then the collection of complements of all closed sets so defined yields a topology $\tau=\tau(\delta)$ on X.

3. Some results on topological hyper nearrings

In this section, we present some results and properties in topological hyper nearring.

Lemma 2. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring. Then, $0 \in \underset{R \neq U \in \tau}{\bigcup} U$.
Proof. If $0 \notin \underset{R \neq U \in \tau}{ } U$, then for every $R \neq U \in \tau, 0 \notin U$. Let $U \in \tau, U \neq \emptyset$ and $0 \neq x \in U$. By the continuity of the mapping + , there exist neighborhoods $V_{1}, V_{2} \in \tau$ of x and 0 , respectively, such that $V_{1}+V_{2} \subseteq U$. Hence, we conclude that $V_{2}=R$ and $V_{1}+R \subseteq U$. Hence, we have $0 \in x+(-x) \subseteq V_{1}+R \subseteq U$ and it is a contradiction. Therefore, we have $0 \in \underset{R \neq U \in \tau}{ } U$.

Lemma 3. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R. Let \mathcal{U} be the system of all neighborhoods of 0 , then for any subset A of R,

$$
\bar{A}=\bigcap_{U \in \mathcal{U}}(A+U)
$$

Proof. Suppose that $x \in \bar{A}$ and $U \in \mathcal{U} . x-U$ is an open neighborhood of x, hence we have $x-U \cap A \neq \emptyset$. Thus there exists $a \in A$ such that $a \in x-U$. So, $x \in a+U \subseteq A+U$, for all $U \in \mathcal{U}$. Therefore, $\bar{A} \subseteq \bigcap_{U \in \mathcal{U}}(A+U)$. Now, let $x \in A+U$, for every $U \in \mathcal{U}$ and let V be a neighborhood of $x . x-V$ is a neighborhood of 0 , hence $x \in A+(x-V)$. So, there exist $a \in A$ and $t \in x-V$ such that $x \in a+t$. Thus $a \in x-t \subseteq x+V-x=V$. Then $A \cap V \neq \emptyset$ and this proves that $x \in \bar{A}$ and $\bigcap_{U \in \mathcal{U}}(A+U) \subseteq \bar{A}$. Therefore, $\bar{A}=\bigcap_{U \in \mathcal{U}}(A+U)$.
Corollary 1. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R and let \mathcal{U} be the system of all neighborhoods of 0 . Then,
(i) $\overline{\{0\}}=\bigcap_{U \in \mathcal{U}} U$;
(ii) For every open set V and every closed set F such that $V \cap \overline{\{0\}} \neq \emptyset$ and $F \cap \overline{\{0\}} \neq \emptyset$, we have $\overline{\{0\}} \subseteq V$ and $\overline{\{0\}} \subseteq F$;
(iii) $\{0\}$ is dense in R if and only if R has trivial topology $\{\emptyset, R\}$.

Proof. (i) It follows immediately from of Lemma 3 .
(ii) Let V be open, $V \cap \overline{\{0\}} \neq \emptyset$ and $t \in V \cap \overline{\{0\}} . V$ is a neighborhood of t and $t \in \overline{\{0\}}$, thus V is a neighborhood of 0 and by $(i), \overline{\{0\}} \subseteq V$. Now, suppose that
\bar{F} is a closed subset and $F \cap \overline{\{0\}} \neq \emptyset$. Then, $\overline{\{0\}} \nsubseteq F^{c} . F^{c}$ is open thus we have $\overline{\{0\}} \cap F^{c}=\emptyset$. Consequently, we get $\overline{\{0\}} \subseteq F$.
(iii) Let $\{0\}$ is dense in R and U be nonempty and open in R. Then, $R=\overline{\{0\}}$ and by $(i i)\{0\} \subseteq U$. Therefore, $R=U$.

Lemma 4. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R. Then $\{0\}$ is open if and only if τ is discrete.

Proof. It is straightforward.
Theorem 2. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part and H be a normal subhyper group of it. Then R / H is discrete if and only if H is open.

Proof. Suppose that R / H is discrete and π is the natural mapping $x \mapsto \pi(x)=$ $H+x$ of R onto R / H. Then, the identity, $\pi(0)$ of R / H is an isolated point. So, $\pi^{-1}(\pi(0))=H$ is open of R. Now, if H is open, since π is open, it follows that $\pi(H)$ is open. Hence the identity $\pi(H)$ of R / H is an isolated point. Therefore, we conclude that R / H is discrete.

Theorem 3. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part. Then, the following conditions are equivalent:
(1) R is a T_{0} - space;
(2) $\{0\}$ is closed.

Proof. $(1 \Rightarrow 2)$ Let R be a T_{0} - space and let $x \in \overline{\{0\}}$. We prove that $x=0$. If $x \neq 0$, then by (1) there exists an open neighborhood U containing only 0 or x, but since $x \in \overline{\{0\}}$, hence U is a neighborhood of 0 , such that $x \notin U$. So, $x \in-U+x$. By Lemma 1, $-U+x$ is an open neighborhood of x , such that $0 \notin-U+x$ (Because if $0 \in-U+x$, then there exists $u \in U$ such that $0 \in-u+x$. So, $x=u+0 \in U$), this is a contradiction. Thus, $x=0$ and it follows that 0 is closed.
$(2 \Rightarrow 1)$ Let $\{0\}$ be closed and $x, y \in R, x \neq y$. We show that there exist an open neighborhood U containing only x or y. If $y=0$, since $\{0\}$ is closed and $x \neq 0$, then x is an interior point of $R \backslash\{0\}$. Hence, there exists a neighborhood U of x such that $0 \notin U$. Now, if $x \neq 0, y \neq 0$ and $x \neq y$, then $0 \notin x-y$. Consequently, by the previous part, for every $t \in x-y$ there exists a neighborhood U_{t} of t, such that $0 \notin U_{t}$. We consider $U=\bigcup_{t \in x-y} U_{t}$. Then $x-y \subseteq U$ and $0 \notin U$.Thus $U+y$ is a neighborhood of x such that $y \notin U+y$ (since $0 \notin U)$. Therefore, R is a $T_{0^{-}}$ space.

Let (X, τ) be a topological space. If f is a arbitrary mapping from X onto Y, then consider the family $\tau_{f}=\left\{U: U \subseteq Y, f^{-1}(U) \in \tau\right\}$. Obviously τ_{f} is a topology on Y.
Theorem 4. [25] Let $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ be a continuous function. Then $\tau^{\prime} \leq \tau_{f}$.

Lemma 5. Let $f: R \rightarrow R^{\prime}$ be a homomorphism of hyper nearrings. Then for every subset $A \subseteq R, f^{-1}(f(A))=\operatorname{ker} f+A$.
Proof. Let $A \subseteq R$ and $t \in f^{-1}(f(A))$. Then $f(t) \in f(A)$ and it follows that there exists $a \in A$ such that $f(t)=f(a)$. Thus $0 \in f(t)-f(a)=f(t-a)$. Hence there exists $x \in t-a$ such that $f(x)=0$. Then $x \in \operatorname{ker} f$. Thus $t \in x+a \subseteq \operatorname{ker} f+A$ and this shows that $f^{-1}(f(A)) \subseteq k e r f+A$. It is obvious that $k e r f+A \subseteq f^{-1}(f(A))$. Therefore, $f^{-1}(f(A))=k e r f+A$.

Theorem 5. Let $(R,+, \cdot, \tau)$ and $\left(R^{\prime},+^{\prime}, .^{\prime}, \tau^{\prime}\right)$ be two topological hyper nearring such that every open subset of them is a complete part and f from R onto R^{\prime} be a homomorphism. Then $\left(R^{\prime}, \tau_{f}\right)$ is a topological hyper nearring.

Proof. We should show that $+^{\prime}, .^{\prime}$ and inverse operation are continuous on $\left(R^{\prime}, \tau^{\prime}\right)$. Suppose that $x^{\prime}, y^{\prime} \in R^{\prime}$ and $x^{\prime}+^{\prime} y^{\prime} \subseteq U^{\prime} \in \tau_{f}$. Since f is onto, then there exist $x, y \in R^{\prime}$ such that $f(x)=x^{\prime}$ and $f(y)=y^{\prime}$. Hence $f(x+y)=f(x)+{ }^{\prime} f(y)=$ $x^{\prime}+{ }^{\prime} y^{\prime} \subseteq U^{\prime}$. So, $x+y \subseteq f^{-1}\left(U^{\prime}\right) \in \tau\left(\right.$ since $\left.U^{\prime} \in \tau_{f}\right)$. Since + is continuous, then there exist neighborhoods $U_{x} \in \tau$ and $U_{y} \in \tau$ of elements x and y, respectively, such that $U_{x}+U_{y} \subseteq f^{-1}\left(U^{\prime}\right)$. By Lemmas 1 and 5, $f^{-1}\left(f\left(U_{x}\right)\right)=\operatorname{ker} f+^{\prime} U_{x} \in \tau$ and $f^{-1}\left(f\left(U_{y}\right)\right) \in \tau$. Hence $f\left(U_{x}\right) \in \tau_{f}$ and $f\left(U_{y}\right) \in \tau_{f}$. Therefore, we obtain

$$
f\left(U_{x}\right)+^{\prime} f\left(U_{y}\right)=f\left(U_{x}+U_{y}\right) \subseteq f\left(f^{-1}\left(U^{\prime}\right)\right)=U^{\prime}
$$

This completes the proof.
Theorem 6. Let f from (R, τ) onto $\left(R^{\prime}, \tau^{\prime}\right)$ be a homomorphism of topological hyper nearrings. Then $f:(R, \tau) \rightarrow\left(R^{\prime}, \tau_{f}\right)$ is continuous and open.
Proof. If $U \in \tau_{f}$, by the definition of $\tau_{f}, f^{-1}(U) \in \tau$. Thus, f is continuous. Now, let U be an open subset in R. Then by Theorem $5 f^{-1}(f(U))=\operatorname{ker} f+U$ is open in (R, τ). Thus by the definition of $\tau_{f}, f(U) \in \tau_{f}$. This means $f(U)$ is open in R^{\prime}. Therefore, f is open.

Let R be a topological hyper nearring, H be normal hyper R-subgroup of R and π be natural mapping of R onto R / H by $x \mapsto \pi(x)=H+x$. Then, by Theorem $3.30[2]\left(R / H, \tau_{\pi}\right)$ is a topological hyper nearring. It is called the quotient space of topological hyper nearring R that we showed τ_{π} by $\bar{\tau}$ in 2 .

Theorem 7. Let R be a T_{0}-topological hyper nearring such that every open subset of it is a complete part of R and H be a discrete subhypergroup of R. Then H is closed.

Proof. Let $x \in \bar{H}$. Since H is a discrete subhypergroup of R, then $0 \in H$ and there exists an open neighborhood V of 0 such that $V \cap H=\{0\}$. By Lemma 1 , $x-V$ is an open neighborhood of x. Therefore, $x-V \cap H \neq \emptyset$ (because $x \in \bar{H}$). Hence there exists $h \in H$ such that $h \in x-V$ and $h \in x-v$, for some $v \in V$. Thus $v \in-h+x \subseteq V \cap \bar{H} \subseteq \overline{V \cap H}$ (let $t \in V \cap \bar{H}$ and U_{t} is a neighborhood of t. $U_{t} \cap V$ is an open neighborhood of t and since $t \in \bar{H}$, then $\left(U_{t} \cap V\right) \cap H \neq \emptyset$
and $U_{t} \cap(V \cap H) \neq \emptyset$. It follows that $t \in \overline{V \cap H}$ and $\left.V \cap \bar{H} \subseteq \overline{V \cap H}\right)$. Thus $v \in \overline{V \cap H}=\overline{\{0\}}=\{0\}$ (by Theorem 3) and it follows that $x=h \in H$ and H is closed.

Theorem 8. Let R be a topological hyper nearring and H a dense subhypergroup of R. If V is a neighborhood of 0 in H, then \bar{V} is a neighborhood of 0 of R.

Proof. Since V is a neighborhood of 0 in H, it follows that there exists an open neighborhood U of 0 in R such that $U \cap H \subseteq V$. Hence, we obtain $U=U \cap G=$ $U \cap \bar{H} \subseteq \overline{U \cap H} \subseteq \bar{V}$. Therefore, 0 is an interior point \bar{V} and \bar{V} is open in R.

4. Topological hyper nearring Derived from a proximity space

In this section, we define a proximity relation on an arbitrary hyper nearring and prove that every hyper nearring with topology whose is induced by this proximity relation is a topological hyper nearring. Also, we show that every topological hyper nearring is a proximity space.

Theorem 9. Let $(R,+, \cdot)$ be a hyper nearring, N be a normal subhypergroup of R and $A, B \subseteq R$. We define $A \delta B$ if and only if there exist $a \in A$ and $b \in B$ such that $-b+a \subseteq N$, then (R, δ) is a proximity space.

Proof. (P_{1}) Suppose that $A \delta B$. Then, there exist $a \in A$ and $b \in B$ such that $-b+a \subseteq N$. So, we get $-a+b \subseteq-N=N$. Therefore, $B \delta A$.
$\left(P_{2}\right)$ It is obvious.
$\left(P_{3}\right)$ Let there exists $x \in A \cap B \neq \emptyset$. Then $-x+x \subseteq-x+N+x \subseteq N$. So, we conclude that $A \delta B$.
$\left(P_{4}\right)$ It is straightforward.
$\left(P_{5}\right)$ Let $A \not \delta B$ and $E:=B+N$. If $A \delta E=B+N$, then there exist $a \in A$ and $b \in B$ such that $-(b+N)+a \subseteq N$. Therefore, $-N-b+a \subseteq N$ and this implies that $-b+a \subseteq N+N \subseteq N$. Thus, $A \delta B$ and it is a contradiction. Hence $A \delta E$. Also, $B \not \delta E^{c}$. If $B \delta E^{c}$, then there exist $b \in B$ and $x \in(B+N)^{c}$ such that $-x+b \subseteq N$. Therefore, $x \in b+N \subseteq B+N$ and it is a contradiction.

Theorem 10. In the proximity space (R, δ) that $(R,+, \cdot)$ is a hyper nearring and δ is defined relation in Theorem 9, the set $\beta=\{x+N: x \in R\}$ is a base for the topology $\tau=\tau(\delta)$.

Proof. Let U be an open subset of R and let $y \in U$. We should show that $y+N \subseteq U$. Let $t \notin U$, then $t \in U^{c}$ and $t \delta U^{c}$ (since U^{c} is closed). $-y+t \subseteq-y+y+N \subseteq$ $-y+N+y \subseteq N$. Hence $t \delta y$ and by (P4), $y \delta U^{c}$. Thus $y \in U^{c}$ and it is a contradiction. This implies that β is a base for the topology $\tau(\delta)$.

Lemma 6. The normal subhypergroup N of R is a clopen set in the topology $\tau(\delta)$ is defined in Theorem 10.

Proof. By Theorem 10, N is open. Now, let $x \delta N$, for $x \in R$. Then there exists $n \in N$ such that $-n+x \subseteq N$. Therefore $x \in n-n+x \subseteq n+N=N$. Thus N is a closed subset in R.

Theorem 11. Let $(R,+, \cdot)$ be a hyper nearring, the normal subhypergroup N be a complete part of R and the relation δ is defined in Theorem 9. Then the system $(R,+, \cdot, \tau(\delta))$ is a topological hyper nearring.

Proof. We should show that + , and inverse operation are continuous. Suppose that U is an open subset of R such that $x+y \subseteq U$, for $x, y \in R$. Then by Theorem 10. there exists $t \in R$ such that $x+y \subseteq t+N \subseteq U$. Therefore, $x+N$ and $y+N$ are neighborhoods of x and y such that $(x+N)+(y+N)=x+y+N \subseteq$ $t+N+N=t+N \subseteq U$. Thus + is continuous on R. Now, Suppose that U is an open neighborhood of $-x$. By Theorem 10, there exists $t \in R$ such that $-x \in t+N \subseteq U$. Therefore, $x \in-N-t=-t+N$. Hence $-t+N$ is a neighborhoods of x and $-(-t+N)=-N+t=N+t=t+N \subseteq U$. This proves that inverse operation is continuous. Now, we show that • is continuous. Suppose that U is an open subset of R such that $x \cdot y \in U$, for $x, y \in R$. Then there exist $t \in R$ such that $x \cdot y \in t+N \subseteq U($ by Theorem10). $x+N$ and $y+N$ are neighborhoods of x and y such that $(x+N) \cdot(y+N) \subseteq x \cdot y+N(N$ is a complete part of R, then $x \cdot y+N$ is a complete part of R. Hence $(x+N) \cdot(y+N) \subseteq x \cdot y+N)$. So, $(x+N) \cdot(y+N) \subseteq x \cdot y+N \subseteq t+N+N=t+N \subseteq U$. Thus • is continuous on R.

Example 3. Let $R=\{0, a, b\}$ be a set with a hyperoperation + and a binary operation • as follows:

+	0	a	b				
0	$\{0\}$	$\{a\}$	$\{b\}$				
a	$\{a\}$	$\{0\}$	$\{b\}$	\cdot	0	a	b
b	$\{b\}$	$\{b\}$	$\{0, a\}$	0	0	a	b
		a	0	a	b		
b	0	a	b				

Then, $(R,+, \cdot)$ is a hyper nearring. We consider a normal subhyperring $N=$ $\{0, a\}$ of R and define:
$A \delta B$ if and only if there exist $a \in A$ and $b \in B$ such that $-b+a \subseteq N$.
Therefore, $\tau(\delta)=\{\varnothing,\{0, a, b\},\{0, a\},\{b\}\}$. Simply, we can show that $(R,+, \cdot, \tau(\delta))$ is a topological hyper nearring.

The following theorem, show that every topological hyper nearring is a proximity space.

Theorem 12. Let $(R,+, \cdot, \tau)$ be a topological hyper nearring such that every open subset of it is a complete part of R. Then there exists a proximity relation δ such that (R, δ) is a proximity space.
Proof. Let \mathcal{U} be the system of symmetric neighborhoods at 0 , for every $A, B \subseteq R$ and $V \in \mathcal{U}$. We define
$A \delta B$ if and only if $A \cap B+V \neq \emptyset$.
Now, we show that δ is a proximity relation.
$\left(P_{1}\right)$ Suppose that $A \delta B$. Then, there exist $a \in A$ and $b \in B$ such that $a \in b+V$. Hence $b \in a-V=a+V \subseteq A+V$. Therefore, $B \delta A$.
$\left(P_{2}\right)$ It is obvious.
$\left(P_{3}\right)$ Let $A \cap B \neq \emptyset$. Then, there exists $x \in A \cap B$. Therefore, $x \in A \cap B+V \neq \emptyset$. Thus $A \delta B$.
$\left(P_{4}\right)$ It is straightforward..
$\left(P_{5}\right)$ Let $A \delta B$ and $E:=B+V$. If $A \delta B+V$, then $A \cap(B+V)+V \neq \emptyset$. Therefore $A \cap B+V \neq \emptyset$ (since V is a complete part of R, then $V+V \subseteq V$) and this proves that $A \delta B$, that it is a contradiction. Hence $A \delta E$. Also, if $B \delta E^{c}$, it follows that $B \cap(B+V)^{c}+V \neq \emptyset$. Hence there exist $b \in B, x \in(B+V)^{c}$ and $v \in V$ such that $b \in x+v$. Thus $x \in b-v \subseteq B+V$ and it is a contradiction. Therefore, $B \delta E^{c}$.

5. Conclusion

In this paper we expressed the relationship between two important subjects: algebraic hyperstructures and topology. We studied several characteristics of topological hyper nearrings and in the following, we related them to proximity spaces.

References

[1] Ameri, R., Topological (transposition) hypergroups, Italian Journal of Pure and Applied Mathematics, (13) (2003), 181-186.
[2] Borhani-Nejad, S., Davvaz, B., Topological hyper nearrings, submitted.
[3] Corsini, P., Prolegomena of Hypergroup Theory, Second ed., Aviani Editore, Tricesimo, Italy, 1993.
[4] Corsini, P., Leoreanu, V., Applications of Hypergroup Theory, Kluwer Academic Publishers, 2003.
[5] Dasic, V., Hypernearrings, Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, (1991), 75-85.
[6] Davvaz, B., Hypernearrings and weak hypernearrings, 11th Algebra Seminar of Iranian Math. Soc. Isfahan University of Technology, Isfahan, October 27-29, (1999), 68-78.
[7] Davvaz, B., Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
[8] Davvaz, B., Semihypergroup Theory, Elsevier, 2016.
[9] Davvaz, B., Leoreanu-Fotea, V., Hyperring Theory and Applications, International Academic Press, 115, Palm Harber, USA, 2007.
[10] Efremovč, V.A., The geometry of proximity, Mat. Sb., 31 (1952), 189-200.
[11] Efremovič, V.A., Infinitesimal spaces, Doklady Akademii Nauk SSSR (N.S.), (in Russian), 76 (1951), 341-343.
[12] Freni, D., A note on the core of a hypergroup and the transitive closure β^{*} of β, Riv. Mat. Pura Appl., 8 (1991), 153-156.
[13] Gontineac, V.M., On hypernear-rings and H-hypergroups, Fifth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1993), Hadronic Press, Inc., USA, (1994), 171-179.
[14] Heidari, D., Davvaz, B., Modarres, S.M.A., Topological hypergroups in the sense of Marty, Comm. algebra, 42 (2014), 4712-4721.
[15] Heidari, D., Davvaz, B., Modarres, S.M.S., Topological polygroups, Bull. Malays. Math. Sci. Soc., 3942 (2016), 707-721.
[16] Hos̆ková-Mayerová, S., Topological hypergroupoids, Comput. Math. Appl., 64(9) (2012), 2845-2849.
[17] Jancic-Ras̆ovic S., Cristea, I., Division hypernear-rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 26(3) (2018), 109-126.
[18] Jancic-Ras̆ovic S., Cristea, I., Hypernear-rings with a defect of distributivity, Filomat, 32(4) (2018), 1133-1149.
[19] Kim, K.H., Davvaz, B., Roh, E.H., On Hyper R-subgroups of hypernear-rings, Scientiae Mathematicae Japonicae, Online (2007), 649-656.
[20] Koskas, M., Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl., 49(9) (1970), 155-192.
[21] Munkres, J.R., Topology, Prentice Hall, Upper Saddle River, NJ, 2000.
[22] Marty, F., Sur une generalization de la notion de group, 8th congress Math. Scandinaves, Stockholm, (1934), 45-49.
[23] Mittas, J., Hypergroups canoniques, Math. Balkanica, 2 (1972), 165-179.
[24] Naimpally S.A., Warrack, B.D., Proximity Spaces, Cambridge Tract, 1970.
[25] Ursul, M., Topological rings satisfying compactness conditions, Springer Science Business Media (2002), vol 549.

[^0]: 2020 Mathematics Subject Classification. Primary 16Y99; Secondary 20N20.
 Keywords and phrases. Hyper nearring, topological hyper nearring, complete part, proximity relation.
 ® borhani.math@yahoo.com; davvaz@yazd.ac.ir-Corresponding author;
 (D) 0000-0001-2345-6789; X0000-0003-1941-5372.

