https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 69, Number 2, Pages 1025–1032 (2020) DOI: 10.31801/cfsuasmas.650840 ISSN 1303–5991 E-ISSN 2618–6470

Received by the editors: November 25, 2019; Accepted: May 16, 2020

A SUBCLASS OF PSEUDO-TYPE MEROMORPHIC BI-UNIVALENT FUNCTIONS

Adnan Ghazy ALAMOUSH

Faculty of Science, Taibah University, SAUDI ARABIA

ABSTRACT. In this paper, a new subclass of pseudo-type meromorphic biunivalent functions is defined on $\triangle = \{z \mid : z \in C \text{ and } 1 < |z| < \infty\}$, we derive estimates on the initial coefficient $|b_0|$, $|b_1|$ and $|b_2|$. Relevant connections of the new results with various well-known results are indicated.

1. INTRODUCTION

Let A denote the class of functions f(z) of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic in the open unit open disk $U = \{z : z \in C, |z| < 1\}$. Also, let the class of univalent and normalized analytic function in the unit disc U be denoted by S with the normalization conditions

$$f(0) = 0 = f'(0) - 1.$$

Furthermore, bi-univalency concept is extended to the class of meromorphic functions defined on $\triangle = \{z : z \in C, 1 < |z| < \infty\}$. For this aim, let Σ denote the class of meromorphic univalent functions q of the form

$$g(z) = z + \sum_{n=0}^{\infty} \frac{b_n}{z^n} \tag{2}$$

defined on the domain \triangle . It is well known that every function $g \in \Sigma$ has an inverse $g^{-1} = h$, defined by

0000-0003-3687-9195.

©2020 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. Primary 11B39, 30C45, 33C45; Secondary 30C50, 33C05.

Keywords and phrases. Analytic functions, univalent functions, meromorphic functions, biunivalent functions, coefficient bounds, pseudo functions.

[🖾] agalamoush@taibahu.edu.sa

 $g^{-1}(g(z)) = z \quad (z \in \Delta),$

and

$$g^{-1}(g(w)) = w \ (M < |w| < \infty, \ M > 0),$$

where

$$g^{-1}(w) = h(w) = w + \sum_{n=0}^{\infty} \frac{B_n}{w^n} = w - b_0 - \frac{b_1}{w} - \frac{b_1 b_0 + b_2}{w^2} - \frac{b_1^2 + b_1 b_0^2 + 2b_0 b_2 + b_3}{w^3} + \dots$$
(3)

A simple computation shows that

$$w = g(h(w)) = (b_0 + B_0) + w + \frac{b_1 + B_1}{w} + \frac{B_2 - b_1 B_0 + b_2}{w^2} + \frac{B_3 - b_1 B_1 + b_1 B_0^2 - 2b_2 B_0 + b_3}{w^3} + \dots$$
(4)

Comparing the initial coefficients in (4), we find that

$$b_0 + B_0 = 0 \qquad \Rightarrow \quad B_0 = -b_0$$

$$b_1 + B_1 = 0 \qquad \Rightarrow \quad B_1 = -b_1$$

$$B_2 - b_1 B_0 + b_2 = 0 \qquad \Rightarrow B_2 = -(b_2 + b_1 b_0)$$

$$B_3 - b_1 B_1 + b_1 B_0^2 - 2b_2 B_0 + b_3 = 0 \qquad \Rightarrow B_3 = -(b_3 + 2b_0 b_1 + b_1 b_0^2 + b_1^2).$$

A function $f \in \Sigma$ is said to be meromorphic bi-univalent if $f^{-1} \in \Sigma$. The family of all meromorphic bi-univalent functions is denoted by Σ' . Estimates on the coefficient of meromorphic univalent functions were investigated by some researchers recently; for example, Schiffer [11] obtained the estimate $|b_2| < \frac{3}{2}$ for meromorphic univalent functions $f \in S$ with $b_0 = 0$. Also, Duren [12] obtained the inequality $|b_2| < \frac{2}{n+1}$ for $f \in S$ with $b_k = 0, 1 \le k \le \frac{n}{2}$. Springer [8] used variational methods to prove that proved that

$$|B_3| < 1$$
 and $|B_3 + \frac{1}{2}B_1^2| < \frac{1}{2}$,

and conjectured that

$$|B_{2n-1}| \le \frac{(2n-2)!}{n!(n-1)!} \ (n=1,2,\ldots)$$

Later on, Kubota [16] has proved that the Springer conjecture is true for n = 3;4;5. Furthermore Schober [7] obtained sharp bounds for $|B_{2n-1}|$ if $1 \le n \le 7$. Recently. Kapoor and Mishra [5] found the coefficient estimates for a class consisting of inverses of meromorphic starlike univalent functions of order α in U^* .

Recently, some several researchers such as (see [1], [2], [3], [4], [6], [9], [13] [14]) introduced new subclasses of meromorphically bi-univalent functions and obtained estimates on the initial coefficients for functions belonging to these subclasses.

In 2013, Babalola [10] defined a new subclass λ -pseudo starlike function of order $0 \leq \beta < 1$ satisfying the analytic condition

$$\Re\left\{\frac{z(f(z))^{\lambda}}{f(z)}\right\} > \beta \ (\lambda \ge 1, \ z \in U).$$
(5)

In particular, Babalola [10] proved that all λ -pseudo-starlike functions are Bazilevic of type $1 - \frac{1}{\lambda}$ and order $\beta^{\frac{1}{\lambda}}$ and are univalent in open unit disk U. Motivated by the earlier work of ([9], [15]), in the present paper, we introduce

Motivated by the earlier work of ([9], [15]), in the present paper, we introduce a new subclasses of the class Σ' and the estimates for the coefficients $|b_0|, |b_1|$ and $|b_2|$ are investigated. Some new consequences of the new results are also pointed out.

2. Coefficient Bounds for the Function Class $\Sigma'_{h,p}(\lambda,\mu)$

We begin by introducing the function class $\Sigma'_{h,p}(\lambda,\mu)$ by means of the following definition.

Definition 2.1. Let the functions $h; p : \triangle \to C$ be analytic functions and

$$h(z) = 1 + \frac{h_1}{z} + \frac{h_2}{z^2} + \frac{h_3}{z^3} + \cdots, \quad p(z) = 1 + \frac{p_1}{z} + \frac{p_2}{z^2} + \frac{p_3}{z^3} + \cdots$$

such that

$$\min\{\Re(h(z)), \Re(p(z))\} > 0, z \in \Delta.$$

A function $g(z) \in \Sigma'$ given by (2) is said to be in the class $\Sigma'_{h,p}(\lambda,\mu)$ if the following conditions are satisfied:

$$g \in \Sigma' \text{and } 1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^{\mu} + \lambda \left(\frac{z(g(z)'^{\mu})}{g(z)} \right) - 1 \right] \in h(\Delta),$$
$$(0 < \lambda \le 1, \ \mu \ge 1, \ z \in \Delta), \tag{6}$$

and

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{h(w)}{w} \right)^{\mu} + \lambda \left(\frac{w(h(w)'^{\mu}}{h(w)} \right) - 1 \in p(\Delta) \right]$$
$$(0 < \lambda \le 1, \ \mu \ge 1, \ w \in \Delta), \tag{7}$$

where $g \in \Sigma'$ and $\gamma \in C \setminus \{0\}$ and the function h is given by (3).

Remark 2.1. There are many choices of h and p which would provide interesting subclasses of class $\Sigma'_{h,p}(\lambda,\mu)$.

(1) If we take

$$h(z) = p(z) = \left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\alpha} = 1 + \frac{2\alpha}{z} + \frac{2\alpha^2}{z^2} + \cdots, \ (0 < \alpha \le 1, \ z \in \Delta).$$

So it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If $f \in \Sigma'_{\alpha}(\lambda, \mu)$. Then

$$\left| \arg\left(1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^{\mu} + \lambda \left(\frac{z(g(z)'^{\mu})}{g(z)} - 1 \right] \right) \right| < \frac{\alpha \pi}{2}$$
$$(0 < \lambda \le 1, \ 0 < \alpha \le 1, \ \mu \ge 1, \ z \in \Delta),$$

and

$$\arg\left(1+\frac{1}{\gamma}\left[\left(1-\lambda\right)\left(\frac{h(w)}{w}\right)^{\mu}+\beta\left(\frac{w(h(w)'^{\mu}}{h(w)}\right)-1\right]\right)\right|<\frac{\alpha\pi}{2}$$
$$(0<\lambda\leq1,\ 0<\alpha\leq1,\ \mu\geq1,\ w\in\Delta),$$

where $g(z) \in \Sigma'$ and $\gamma \in C \setminus \{0\}$ and the function h is given by (3). (2) If we take

$$h(z) = p(z) = \frac{1 + \frac{1-2\beta}{z}}{1 - \frac{1}{z}} = 1 + \frac{2(1-\beta)}{z} + \frac{2(1-\beta)}{z^2}, \ (0 \le \beta < 1, \ z \in \Delta).$$

So it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If $f \in \Sigma'_{\beta}(\lambda, \mu)$. Then

$$\begin{aligned} \Re \left(1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^{\mu} + \lambda \left(\frac{z(g(z)'^{\mu})}{g(z)} - 1 \right] \right) > \beta \\ (0 < \lambda \le 1, \ 0 \le \beta < 1, \ \mu \ge 1, \ z \in \Delta), \end{aligned}$$

and

$$\begin{split} \Re\left(1+\frac{1}{\gamma}\left[(1-\lambda)\left(\frac{h(w)}{w}\right)^{\mu}+\beta\left(\frac{w(h(w))^{\prime\mu}}{h(w)}\right)-1\right]\right) > \beta\\ (0<\lambda\leq 1, \ 0\leq\beta<1, \ \mu\geq 1, \ w\in \Delta), \end{split}$$

where $g \in \Sigma'$ and $\gamma \in C \setminus \{0\}$ and the function h is given by (3).

Theorem 2.1. Let g(z) be given by (2) be in the class $\Sigma'_{\alpha}(\lambda, \mu)$. Then

$$|b_0| \le \min\left\{\sqrt{\frac{|\gamma|^2(|h_1|^2 + |p_1|^2)}{2(\mu - \lambda\mu - \lambda)^2}}, \sqrt{\frac{|\gamma|(|h_2| + |p_2|)}{|\mu(\mu - 1)(1 - \lambda) + 2\lambda|}}\right\}$$
(8)

and

$$|b_{1}| \leq \min\{\frac{|\gamma|(|h_{2}|+|p_{2}|)}{|2(\mu(\mu-1)(1-\lambda)+2\lambda)|}, \frac{|\gamma|}{|(\mu-\lambda-2\lambda\mu)|} \left(\sqrt{\frac{|h_{2}|^{2}+|p_{2}|^{2}}{2}} + \frac{[\mu(\mu-1)(1-\lambda)+2\lambda]^{2}[h_{1}^{2}+p_{1}^{2}]^{2}}{16(\mu-\lambda\mu-\lambda)^{2}}\right)\}, \quad (9)$$

and

$$|b_2| \leq \frac{|\gamma|}{2|(\mu-\lambda-3\lambda\mu)|} \left[\frac{(\mu(\mu-1)(\mu-2)(1-\lambda)-6\lambda)\gamma^2|p_1|^3}{3|(\mu-\lambda\mu-\lambda)^3|}\right]$$

$$+\frac{2\mu(\mu-1)(1-\lambda)+8\mu\lambda-2\mu+6\lambda}{2\mu(\mu-1)(1-\lambda)-(1-\lambda)\mu+5\lambda+4\lambda\mu}|h_{3}| +\frac{2\mu(\mu-1)(1-\lambda)+2\mu\lambda+4\lambda}{2\mu(\mu-1)(1-\lambda)-(1-\lambda)\mu+5\lambda+4\lambda\mu}|p_{3}| \right]$$
(10)

Proof. Let $g \in \Sigma'_{\alpha}(\lambda, \mu)$. Then, by Definition 2.1 of meromorphically bi-univalent function class $\Sigma'_{\alpha}(\lambda, \mu)$, the conditions (6) and (7) can be rewritten as follows:

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{g(z)}{z} \right)^{\mu} + \lambda \left(\frac{z(g(z))^{\mu}}{g(z)} \right) - 1 \right] = h(z) \quad (z \in \Delta)$$
(11)

and

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \left(\frac{h(w)}{w} \right)^{\mu} + \beta \left(\frac{w(h(w)'^{\mu}}{h(w)} \right) - 1 \right] = p(w), \quad (w \in \Delta)$$
(12)

respectively. Here, and in what follows, the functions $h(z) \in P$ and $p(w) \in P$ have the following forms:

$$h(z) = 1 + \frac{p_1}{z} + \frac{p_2}{z^2} + \frac{p_3}{z^3} + \dots \qquad (z \in \Delta)$$
(13)

and

$$p(w) = 1 + \frac{q_1}{w} + \frac{q_2}{w^2} + \frac{q_3}{w^3} + \dots \qquad (w \in \Delta)$$
(14)

upon substituting from (13) and (14) into (11) and (12), respectively, and equating the coefficients, we get

$$\frac{(\mu - \lambda \mu - \lambda)}{\gamma} b_0 = h_1 \tag{15}$$

$$\frac{1}{2\gamma} \left[(\mu(\mu-1)(1-\lambda) + 2\lambda)b_0^2 + 2(\mu-\lambda-2\lambda\mu)b_1 \right] = h_2$$
(16)

$$\frac{1}{6\gamma} [\mu(\mu-1)(\mu-2)(1-\lambda) - \lambda] b_0^3 + \frac{1}{\gamma} [\mu(\mu-1)(1-\lambda) + 2\lambda + \lambda\mu] b_0 b_1$$

$$+\frac{1}{\gamma}[\mu - \lambda - 3\mu\lambda]b_2 = h_3 \tag{17}$$

$$-\frac{(\mu - \lambda \mu - \lambda)}{\gamma}b_0 = p_1 \tag{18}$$

$$\frac{1}{2\gamma} \left[(\mu(\mu-1)(1-\lambda) + 2\lambda)b_0^2 + 2(\lambda-\mu+2\lambda\mu)b_1 \right] = p_2$$
(19)

and

$$\frac{1}{6\gamma} [6\lambda - (\mu(\mu - 1)(\mu - 2)(1 - \lambda))b_0^3 + 6(\mu(\mu - 1)(1 - \lambda)) - \mu(1 - \lambda) + 3\lambda + 3\lambda\mu)b_0b_1 + 6(\lambda - \mu + 3\mu\lambda)b_2] = p_3.$$
(20)

From (15) and (18), we find that

$$h_1 = -q_1 \tag{21}$$

and

$$2(\mu - \lambda \mu - \lambda)^2 b_0^2 = \gamma^2 (h_1^2 + p_1^2)$$
(22)

A.G. ALAMOUSH

that is,

$$|b_0|^2 \le \frac{|\gamma|^2 (|h_1|^2 + |p_1|^2)}{2(\mu - \lambda\mu - \lambda)^2}.$$
(23)

Adding (16) and (19), we get

$$[(\mu(\mu-1)(1-\lambda)+2\lambda)] b_0^2 = \gamma(h_2+p_2)$$
(24)

that is,

$$|b_0|^2 \le \frac{|\gamma|(|h_2| + |p_2|)}{|\mu(\mu - 1)(1 - \lambda) + 2\lambda|}.$$
(25)

From (23) and (25) we get the desired estimate on the coefficient $|b_0|$ as asserted in (8).

Next, in order to find the bound on $|b_0|$, by subtracting the equation (16) from the equation (19), we get

$$2(\mu(\mu-1)(1-\lambda)+2\lambda)b_1 = \gamma(h_2 - p_2),$$
(26)

that is,

$$|b_1| \le \frac{|\gamma|(|h_2| + |p_2|)}{|2(\mu(\mu - 1)(1 - \lambda) + 2\lambda)|}.$$
(27)

By squaring and adding (16) and (19), using (22) in the computation leads to

$$b_1^2 = \frac{\gamma^2}{(\mu - \lambda - 2\lambda\mu)^2} \left(\frac{h_2^2 + p_2^2}{2} - \frac{[\mu(\mu - 1)(1 - \lambda) + 2\lambda]^2 [h_1^2 + p_1^2]^2}{16(\mu - \lambda\mu - \lambda)^2}\right).$$
 (28)

that is,

$$|b_1| \le \frac{|\gamma|}{|(\mu - \lambda - 2\lambda\mu)|} \left(\sqrt{\frac{|h_2|^2 + |p_2|^2}{2}} + \frac{[\mu(\mu - 1)(1 - \lambda) + 2\lambda]^2 [h_1^2 + p_1^2]^2}{16(\mu - \lambda\mu - \lambda)^2} \right).$$
(29)

From (26) and (28) we get the desired estimate on the coefficient $|b_1|$ as asserted in (9).

In order to find the estimate $|b_2|$, consider the sum of (17) and (20), we have

$$b_0 b_1 = \frac{\gamma(h_3 + p_3)}{2\mu(\mu - 1)(1 - \lambda) - (1 - \lambda)\mu + 5\lambda + 4\lambda\mu}.$$
(30)

Subtracting (20) from (17) with $h_1 = -p_1$, we obtain

$$\frac{2(\mu - \lambda - 3\lambda\mu)b_2}{\gamma} = h_3 - p_3 - \frac{(\mu - \lambda - 3\lambda\mu)b_0b_1}{\gamma} - \frac{[\mu(\mu - 1)(\mu - 2)(1 - \lambda) - 6\lambda]b_0^3}{3\gamma}.$$
(31)

Using (21) and (30) in (31) give to

$$b_{2} = \frac{\gamma}{2(\mu - \lambda - 3\lambda\mu)} \left[\frac{(\mu(\mu - 1)(\mu - 2)(1 - \lambda) - 6\lambda)\gamma^{2}p_{1}^{3}}{3(\mu - \lambda\mu - \lambda)^{3}} + \frac{2\mu(\mu - 1)(1 - \lambda) + 8\mu\lambda - 2\mu + 6\lambda}{2\mu(\mu - 1)(1 - \lambda) - (1 - \lambda)\mu + 5\lambda + 4\lambda\mu} h_{3} \right]$$

$$-\frac{2\mu(\mu-1)(1-\lambda)+2\mu\lambda+4\lambda}{2\mu(\mu-1)(1-\lambda)-(1-\lambda)\mu+5\lambda+4\lambda\mu}p_3$$

This evidently completes the proof of Theorem 2.1.

If we take $\lambda = 1$ in Theorem 2.1, we get the following Corollary.

Corollary 2.2. Let g(z) be given by (1.2) be in the class $\Sigma'_{\lambda,\beta}(\alpha)$. Then

$$b_0| \le \min\left\{\sqrt{\frac{|\gamma|^2(|h_1|^2 + |p_1|^2)}{2}}, \sqrt{\frac{|\gamma|(|h_2| + |p_2|)}{2}}\right\},\tag{32}$$

$$|b_1| \le \min\left\{\frac{|\gamma|(|h_2| + |p_2|)}{4}, \frac{|\gamma|}{|\mu + 1|}\left(\sqrt{\frac{|h_2|^2 + |p_2|^2}{2} + \frac{(|h_1|^2 + |p_1|^2)^2}{4}}\right)\right\}.$$
 (33)

and

$$|b_2| \le \frac{|\gamma|}{2|(2\mu+1)|} \times \left[2\gamma^2 |p_1|^3 + \frac{6(\mu+1)}{5+4\mu} |h_3| + \frac{2(\mu+2)}{5+4\mu} |p_3| \right].$$
(34)

If we take

$$h(z) = p(z) = \left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\alpha} = 1 + \frac{2\alpha}{z} + \frac{2\alpha^2}{z^2} + \cdots, \ (0 < \alpha \le 1, \ z \in \Delta),$$

and

$$h(z) = p(z) = \frac{1 + \frac{1 - 2\beta}{z}}{1 - \frac{1}{z}} = 1 + \frac{2(1 - \mu)}{z} + \frac{2(1 - \mu)}{z^2}, \ (0 < \mu \le 1, \ z \in \Delta),$$

respectively, in the Theorem 2.1, we obtain the following results which is an improvement of estimates obtained by Srivastava et. at [9].

Corollary 2.3. Let g(z) be given by (2) be in the class $\Sigma'_{\lambda,\beta}(\alpha)$. Then

$$|b_0| \le 2\alpha \tag{35}$$

and

$$|b_1| \le \frac{2\sqrt{5\alpha^2}}{\lambda+1}.\tag{36}$$

Corollary 2.4. Let g(z) be given by (2) be in the class $\Sigma'_{\lambda,\beta}(\mu)$. Then

$$|b_0| \le 2(1-\mu) \tag{37}$$

and

$$|b_1| \le \frac{2(1-\mu)\sqrt{4\mu^2 - 8\mu + 5}}{\lambda + 1}.$$
(38)

Remark 2.2. For function $g \in \Sigma'_{h,p}(\lambda,\mu)$ given by (2) by taking $p(z) = h(z) = \frac{1+Az}{1+Bz} - 1 \le B < A \le 1$, we obtain the initial coefficient estimates $|b_0|$, $|b_1|$, and $|b_2|$ which leads to the results discussed in Theorem 2.2 of [15].

A.G. ALAMOUSH

References

- Alamoush, A. G., Darus, M., Faber polynomial Coefficients estimates for a new subclass of meromorphic bi-univalent functions, *Advances in Inequalities and Applications*, 2016:3 (2016).
- [2] Deniz, E., Certain subclasses of bi univalent functions satisfying subordinate conditions, Journal of Classical Analysis, 2(1) (2013), 49–60.
- [3] Deniz, E., Yolcu, H. T., Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Mathematics, 5(1) (2020), 640–649.
- [4] Deniz, E., Jahangiri, J. M., Kina, S. K., Hamidi, S. G., Faber polynomial coefficients for generalized bi-subordinate functions of complex order, *Journal of Mathematical Inequalities*, 12(3) (2018), 645–653.
- [5] Kapoor, G. P., Mishra, A. K., Coefficients estimates for inverses of starlike functions of positive order, Journal of Mathematical Analysis and Applications, 329(2) (2007), 922–934.
- [6] Çağlar, M., Deniz, E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 66(1) (2017), 85-91.
- [7] Schober, G., Coefficients of inverses of meromorphic univalent functions, Proceedings of the American Mathematical Society 67(1) (1977), 111-116.
- [8] Springer, G., The Coefficients problem for schlicht mappings of the exterior of the unit circle, Transactions of the American Mathematical Society, 70 (1951), 421–450.
- Srivastava, H.M., Joshi, B.S., Joshi, S.S., Pawar, H., Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, *Palestine Journal of Mathematics*, 5 (2016), 250–258.
- [10] Babalola, K. O., On λ-pseudo-starlike functions, Journal of Classical Analysis, 3 (2013), 137–147.
- [11] Schiffer, M., On an extremum problem of conformal representation, Bulletin de la Socit Mathematique de France, 66 (1938), 48–55.
- [12] Duren, P. L., Coefficients of meromorphic schlicht functions, Proceedings of the American Mathematical Society, 28 (1971), 169–172.
- [13] Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Coefficients estimates for a class of meromorphic bi-univalent functions, *Comptes Rendus Mathematique*, 351 (2013), 349–352.
- [14] Hamidi, S. G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.M., Coefficient estimates for certain classes of meromorphic bi-univalent functions, *Comptes Rendus Mathematique*, 352 (2014), 277–282.
- [15] Janani, T., Murugusundaramoorthy, G., Vijaya, K., New subclass of pseudo-type meromorphic bi-univalent functions of complex order, Novi Sad Journal of Mathematics, 48(1) (2018), 93–102.
- [16] Kubota, Y., Coefficients of meromorphic univalent functions, Kodai Mathematical Seminar Reports, 28(2-3) (1977), 253-261.