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EQUIVALENCE CONDITIONS OF TWO SYSTEMS OF
VECTORS IN THE TAXICAB PLANE AND ITS APPLICATIONS

TO TAXICAB POLYGONS

İDRIS ÖREN AND HÜSNÜ ANIL ÇOBAN

Abstract. This study presents the conditions of MT (2)-equivalence for two
systems of vectors {x1, x2, x3} and {y1, y2, y3} in R2T , where MT (2) is the
group of all isometries of the 2-dimensional taxicab space R2T . Firstly a min-
imal complete system of MT (2)-invariants of {x1, x2, x3} is obtained. Then,
using the conditions ofMT (2)-equivalence, an answer is given to the open prob-
lem posed in [10, p.428]. Furthermore, an algorithm is given for constructing
taxicab regular polygons in terms of MT (2)-invariants. This algorithm is gen-
eral and useful to construct the taxicab regular 2n-gons and gives a tool to solve
special cases of the open problem posed in [2, p.32]. Besides, both the con-
ditions of the taxicab regularity of Euclidean regular polygons and Euclidean
regularity of taxicab regular polygons are given in terms of MT (2)-invariants.

1. Introduction

Many problems in applied algebra have symmetries or are invariant under certain
natural transformations. In particular, all geometric magnitudes and properties are
invariant with respect to the underlying transformation group. Properties in Euclid-
ean geometry are invariant under the Euclidean group of rotations, reflections and
translations; properties in projective geometry are invariant under the projective
transformations, etc. This identification of geometry and invariant theory is ex-
pressed in Felix Klein’s Erlanger Program (see detailed information in [14, p.14,
193]).
Let R be the field of real numbers. Then the 2-dimensional taxicab space

can be introduced by using the metric dT (x, y) = |x1 − y1| + |x2 − y2| instead
of the well known Euclidean metric dE (x, y) =

√
(x1 − y1)2 + (x2 − y2)2, where

x = (x1, x2) , y = (y1, y2) ∈ R2. This space will be denoted by R2T which is known
as taxicab plane geometry.
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The taxicab metric dT (x, y) =
√
p(x− y, x− y) + 2 |(x1 − y1)(x2 − y2)| is also

defined in the paper [3, Definition 3.1, p.302], where p(x − y, x − y) is Euclidean
inner product.
LetMT (2) =

{
F : R2T → R2T : Fx = gx+ b,∀g ∈ D4, b ∈ R2T

}
which is known as

taxicab group (see [8], [10, p.424]) be the group of all isometries of R2T , where the
dihedral group D4 is the (Euclidean) symmetry group of the square.
Let ME(2) =

{
F : R2 → R2 : Fx = gx+ b,∀g ∈ O(2), b ∈ R2

}
which is known

Euclidean motion group (see [10, p.424]) be the group of all isometries of the 2-
dimensional Euclidean space R2 where the group O(2) is the orthogonal group.
The complete system of ME(n)-invariants of a system of the vectors

{x1, x2, . . . , xm} in the n-dimensional Euclidean space is given in [9, Theorem 6]
and the complete system of relations between elements of this complete system is
given in [9, Theorem 3] where ME(n) is an n-dimensional Euclidean motion group.
An aim of this study is to present the equivalence conditions of two systems of

vectors {x1, x2, x3}, {y1, y2, y3} and to give a minimal complete system of MT (2)-
invariants of the vectors {x1, x2, x3} for taxicab plane geometry.
The taxicab geometry play an important role in ecology, optic, fire-spread simu-

lation with square-cell, grid-based maps and nonlinear differential equations. Appli-
cations of the taxicab metric in ecology are also well-known. Ecologist have found
taxicab metric dT a useful metric in the measurement of ’niche overlap’and notion
of ecological distance between species.(see in papers [13],[11],[16],[4],[12], [7], [1]).
Let us give the well known theorem in the Euclidean geometry as; "If sys-

tems {x1, x2, . . . , xm} and {y1, y2, . . . , ym} of vectors in Rn such that dE (xi, xj) =
dE (yi, yj) for all i, j = 1, 2, . . . ,m; i 6= j, then there exists a unique isometry F of
Rn for which Fxi = yi for all i = 1, 2, . . . ,m." [9].
The group of isometries of the taxicab geometry described, and the following

open problem is given in [10]: "What (if any) is the taxicab metric analogue of the
theorem above for Euclidean isometries?" In this study, an answer is given to this
open problem.
Therefore, the following question is one of the fundamental problems of invariant

theory (see [14, pp.15]).
"Given a geometric property P , find the corresponding invariants and vice versa.
Is there an algorithm for this transition between geometry and algebra?"
Let P be any taxicab regular polygon in the taxicab plane. For P , the following

problems are important:

(1) The existence or non-existence of P .
(2) Which Euclidean regular polygons are also the taxicab regular, and which

are not?
(3) Find an algorithm to construct taxicab regular polygons.

The above problems for P are geometrically discussed in [2]. Regular polygons
in the taxicab plane were studied by means of taxicab circles also in [6]. Some
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regular polygons in the taxicab 3-space are described in [15]. In papers [2, 6], the
following corollaries are obtained:

(i) In [2], the existence of taxicab regular 2n-gons by means of taxicab cir-
cles is proved. Besides, the non-existence of taxicab regular triangle are
proved geometrically, and the question "Does there exist any taxicab regu-
lar (2n−1)-gons?" is posed as an open problem. In [6], the non-existence of
taxicab regular triangles and pentagons are proved geometrically by means
of taxicab circles.

(ii) In the papers [2, 6], it is proved that all Euclidean squares and some special
Euclidean regular octagons are also taxicab regular, and vice versa.

(iii) To construct taxicab regular 2n-gons, a procedure is given in the proof of
Theorem 8 in [2] and a method is demonstrated for any n in [6].

In this study, the solutions of above problems for taxicab regular polygons P in
terms of invariants of vectors are investigated. Therefore, an answer is given to the
special cases of the open problem posed in [2].
The study is organized as follows. In Section 2, the conditions of G-equivalence

of two systems of vectors are given for groups G = MT (2) and G = D4. The
relations between elements of the complete system of MT (2)-invariant functions
of two vectors x1, x2 is geometrically given. The open problem proposed in [10]
is solved for the systems of vectors {x1, x2, x3} and {y1, y2, y3}. In Section 3,
a minimal complete system of MT (2)-invariants functions of the system of vectors
{x1, x2, x3} is introduced. In Section 4, both the conditions of the taxicab regularity
of Euclidean regular polygons and Euclidean regularity of taxicab regular polygons
are given in terms of MT (2)-invariants of the vectors. In Section 5, an algorithm
to construct taxicab regular polygons and some corresponding examples are given.
In Section 6, in addition to the algorithm a procedure is given to the determine the
non-existence of taxicab regular (2n− 1)-gon having given a line segment as a side
for a definite value of n, and some corresponding examples are given.

2. Conditions of G-equivalence of vectors in taxicab geometry

Let G be a group.

Definition 1. Two systems of vectors {u1, u2, u3} and {v1, v2, v3} in R2T will be
called G-equivalent and written by {u1, u2, u3}

G∼ {v1, v2, v3} if there exists F ∈ G
such that vj = Fuj for all j = 1, 2, 3.

Definition 2. A function f(u1, u2, u3) of vectors u1, u2, u3 in R2T will be called
G-invariant if f(Fu1, Fu2, Fu3) = f(u1, u2, u3) for all F ∈ G.

Example 3. Let u1, v1 be vectors in R2T . Since the group D4 is a subgroup of or-
thogonal group O(2), we have p(u1, v1) is D4-invariant. That is, since p(gu1, gv1) =
p(u1, v1) for all g ∈ D4, we obtain that the scalar product p(u1, v1) is D4-invariant.
Similarly, the function p(u1 − v1, u1 − v1) is MT (2)-invariant.
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Example 4. Let u1 = (u11, u12), v1 = (v11, v12) be vectors in R2T . We define
function q(u1, v1) = (u11u12)(u11v12 + u12v11). Then q(u1, v1) is D4-invariant.
Similarly, the function q(u1 − v1, u1 − v1) is MT (2)-invariant.

Theorem 5. Let {u1, u2, u3} and {v1, v2, v3} be two systems of vectors in R2T .
Then following two conditions are equivalent:

(i) {u1, u2, u3}
MT (2)∼ {v1, v2, v3}

(ii) {u2 − u1, u3 − u1}
D4∼ {v2 − v1, v3 − v1}

Proof. Assume that {u1, u2, u3}
MT (2)∼ {v1, v2, v3}. Then there exists F ∈ MT (2)

such that vi = Fui for all i = 1, 2, 3, where F has the form Fu = gu+b, g ∈ D4, b ∈
R2T . These equalities imply that vi − v1 = g(ui − u1) for all i = 2, 3. This means

that {u2 − u1, u3 − u1}
D4∼ {v2 − v1, v3 − v1}.

Conversely, assume that{u2 − u1, u3 − u1}
D4∼ {v2 − v1, v3 − v1}. Then there exists

g ∈ D4 such that vi − v1 = g(ui − u1) for all i = 2, 3. Put b = v1 − gu1. Then
vi = gui + b for all i = 1, 2, 3. That is, {u1, u2, u3}

MT (2)∼ {v1, v2, v3}. �
Let u1, u2, . . . , um ∈ R2T . We denote the matrix ‖p(uj , uk)‖j,k=1,2,...,m by

Gr (u1, u2, . . . , um) and its determinant by detGr (u1, u2, . . . , um).
Below we use the following known proposition (see [5, p.192]).

Proposition 6. Vectors u1, u2, . . . , um ∈ R2T are linearly depended if and only if
detGr (u1, u2, . . . , um) = 0

Proof. A proof is given [17, p.75]. �
Example 7. The rank of the system of vectors X = {x1, x2} of vectors in R2T is
D4-invariant, but it is not MT (2)-invariant.

Remark 8. Let X = {x1, x2} and Y = {y1, y2} be two systems of vectors in R2T
such that x1 6= 0 and y1 = 0. Then the systems X and Y are not D4-equivalent. In
the case where x1 = y1 = 0, the problem of D4 − equivalence of systems X and Y
reduces to the problem of D4-equivalence of the systems {x2} and {y2}. Therefore
we will investigate the problem of D4-equivalence of the systems X and Y such that
x1 6= 0 and y1 6= 0.

Theorem 9. Let X = {x1, x2} and Y = {y1, y2} be two systems of vectors in R2T
such that x1 6= 0 and y1 6= 0. Then following two conditions are equivalent:

(i) {x1, x2}
D4∼ {y1, y2}

(ii) p(xi, xj) = p(yi, yj), q(x1, x1) = q(y1, y1) and q(x1, x2) = q(y1, y2) for all
i = 1, 2; i ≤ j.

Proof. Assume that {x1, x2}
D4∼ {y1, y2}. Then there exists g ∈ D4 such that

gxi = yi for all i = 1, 2. Since the functions p(xi, xj), q(x1, x1) and q(x1, x2) are
D4 − invariants, that is, p(xi, xj) = p(yi, yj), q(x1, x1) = q(y1, y1) and q(x1, x2) =
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q(y1, y2) for all i = 1, 2; i ≤ j.

Conversely, assume that the conditions p(xi, xj) = p(yi, yj), q(x1, x1) = q(y1, y1)
and q(x1, x2) = q(y1, y2) for all i = 1, 2; i ≤ j are valid.
Denote by r(X) and r(Y ) ranks of the systems X = {x1, x2} and Y = {y1, y2},

respectively.
(a) Firstly, consider the case r(X) = 2. Then there exist vectors x1, x2 which are

linearly independent. Let ‖x1x2‖ be the matrix of column vectors x1, x2. Denote
by U and V the matrices ‖x1x2‖ and ‖y1y2‖ and their transpose matrices by UT ,
V T , respectively. Let detU be the determinant of U . Linearly independence of
x1, x2 implies detU 6= 0. ‖p(xi, xj)‖i,j=1,2 is the Gram matrix of vectors x1, x2.
Then it is easy to see that

UTU = ‖p(xi, xj)‖i,j=1,2 (1)

Since p(xi, xj) = p(yi, yj) for all i, j = 1, 2, it is obtained

‖p(xi, xj)‖i,j=1,2 = ‖p(yi, yj)‖i,j=1,2 (2)

(1) and (2) imply
UTU = V TV (3)

whence
(detU)2 = (detV )2 (4)

Since detU 6= 0, (4) implies that detV 6= 0. That is, the vectors y1, y2 are linearly
independent. Then there exists a 2× 2-matrix g such that detg 6= 0 and

V = gU (5)

(3) and (5) give the equation

UTU = UT gT gU (6)

Since detU 6= 0, (6) implies gT g = I, where I is the identity matrix. This means
that g ∈ O(2). (5) implies yj = gxj for all j = 1, 2. Now we prove that g ∈ D4.

g ∈ O(2) has the form g =

(
a −b
b a

)
with detg = 1 or

(
a b
b −a

)
with detg = −1.

Consider the matrix g =

(
a −b
b a

)
such that detg = 1. Let xi = (xi1, xi2) for

all i = 1, 2. Since yj = gxj for all j = 1, 2, it is obtained

yj = (axj1 − bxj2, bxj1 + axj2) (7)

for all j = 1, 2.
q(x1, x1) = q(y1, y1) and (7) imply that

ab = 0 (8)

(8) and detg = a2 + b2 = 1 give
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(i) If a = 0, then b = ∓1. So g =

(
0 −1
1 0

)
or g =

(
0 1
−1 0

)
.

(ii) If b = 0, then a = ∓1. Therefore g =

(
1 0
0 1

)
or g =

(
−1 0
0 −1

)
.

Similarly, consider the matrix g =

(
a b
b −a

)
such that detg = −1. Let xi =

(xi1, xi2) for all i = 1, 2. Since yj = gxj for all j = 1, 2, it is obtained

yj = (axj1 + bxj2, bxj1 − axj2) (9)

for all j = 1, 2.
q(x1, x1) = q(y1, y1) and (9) imply

ab = 0 (10)

.
(10) and detg = a2 + b2 = −1 give

(i) If a = 0, then b = ∓1. Therefore g =

(
0 1
1 0

)
or g =

(
0 −1
−1 0

)
.

(ii) If b = 0, then a = ∓1. Hence g =

(
1 0
0 −1

)
or g =

(
−1 0
0 1

)
.

So we obtain that g ∈ D4.
Now, let us prove that there exists g ∈ D4 such that gxi = yi for all i =

1, 2. Assume that gx1 = y1, hx2 = y2 such that g, h ∈ D4 and g 6= h. Hence
the inequality q(x1, x2) 6= q(y1, y2) is obtained which a contradiction is to the
assumption of the theorem. From the equality q(x1, x2) = q(y1, y2), it is obtained
that there exists g ∈ D4 such that gxi = yi for all i = 1, 2.

(b) Now, consider the case r(X) = 1. The conditions of the theorem and Propo-
sition 6 imply that r(X) = r(Y ). Let X̃ and Ỹ denote the linear subspaces of
R2T spanned by the systems X = {x1, x2} and Y = {y1, y2}, respectively. Then
dim(X̃) = r(X) = r(Y ) = dim(Ỹ ) ≤ 1. Since dim(X̃) = dim(Ỹ ) = 1, there exist
vectors x2 and y2 in R2T such that p(x2, x2) = 1, p(x1, x2) = 0 and p(y2, y2) = 1,
p(y1, y2) = 0. Consider the systems Ū = {x1, x2} and V̄ = {y1, y2}. Then
r(Ū) = r(V̄ ) = 2 and p(xi, xs) = p(yi, ys) are obtained for all i, s = 1, 2. Ac-
cording to the case (a), there exists g ∈ O(2) such that V̄ = gŪ . Similarly, the
conditions in the theorem and from the case (a), it is obtained that there exists
g ∈ D4 such that V̄ = gŪ . In particularly, we obtain yj = gxj for all j = 1, 2.

Hence, from (a) and (b), we have {x1, x2}
D4∼ {y1, y2}. �

Corollary 10. According to Theorem 9, the system

{p(xi, xj), q(x1, x1), q(x1, x2), 1 ≤ i ≤ j ≤ 2}
is a complete system of D4-invariants of vectors x1, x2.

Using the Theorem 5 and Theorem 9, the following theorem can be obtained.
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Theorem 11. Let X = {x1, x2, x3} and Y = {y1, y2, y3} be two systems of vectors
in R2T such that x2 − x1 6= 0 and y2 − y1 6= 0. Then following two conditions are
equivalent:

(i) {x1, x2, x3}
MT (2)∼ {y1, y2, y3}

(ii) p(xi−x1, xj−x1) = p(yi−y1, yj−y1), q(x2−x1, x2−x1) = q(y2−y1, y2−y1)
and q(x2 − x1, x3 − x1) = q(y2 − y1, y3 − y1) for all i = 2, 3; i ≤ j.

Corollary 12. According to Theorem 11, the system

{p(xi − x1, xj − x1), q(x2 − x1, x2 − x1), q(x2 − x1, x3 − x1), 2 ≤ i ≤ j ≤ 3}
is a complete system of MT (2)-invariants of vectors x1, x2, x3.

Using the Theorem 11, the following theorem gives an answer to the open prob-
lem in [10] in terms of MT (2)-invariants.

Theorem 13. Let X = {x1, x2, x3} and Y = {y1, y2, y3} be two system of vectors
in R2T . Then following two conditions are equivalent:

(i) {x1, x2, x3}
MT (2)∼ {y1, y2, y3}

(ii) dT (xi, xj) = dT (yi, yj) and dE(xi, xj) = dE(yi, yj) for all i 6= j and i, j =
1, 2, 3.

According to Theorem 13, the system {dT (xi, xj), dE(xi, xj), i, j = 1, 2, 3; i 6= j}
is a complete system of MT (2)− invariants of vectors x1, x2, x3.
Specially, the system {dT (x1, x2), dE(x1, x2)} is a complete system of MT (2)-

invariants of vectors x1, x2.
Now we investigate relations between elements of the complete system ofMT (2)-

invariant functions of two vectors x1, x2

Theorem 14. Let x1 be a fixed point in R2T . Then for all points x1 6= x2, the
following statements are hold:

(i) The geometric locus of points x2 where dT (x1, x2) = dE(x1, x2) are intersec-
tion points of taxicab and Euclidean circles with centered x1. Geometrically,
this is a inscribed quadrilateral.

(ii) The geometric locus of points x2 where dT (x1, x2) =
√

2dE(x1, x2) are tan-
gent points of taxicab and Euclidean circles with centered x1. Geometrically,
this is a circumscribed quadrilateral.

(iii) The geometric locus of points x2 where dT (x1, x2) <
√

2dE(x1, x2) are in-
tersection points of taxicab and Euclidean circles with centered x1. The
number of the points are only eight.

Proof. Let x1 = (x11, x12) and x2 = (x21, x22) be two points in R2T such that
x1 6= x2. Let dT (x1, x2) = a and dE(x1, x2) = r, where a and r are positive real
numbers. Then, from the equalities dE(x1, x2) =

√
p(x1 − x2, x1 − x2) = r and

dT (x1, x2) =
√
p(x1 − x2, x1 − x2) + 2 |(x11 − x21)(x12 − x22)| = a, we have

p(x1 − x2, x1 − x2) = r2 (11)
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and
p(x1 − x2, x1 − x2) + 2 |(x11 − x21)(x12 − x22)| = a2 (12)

The equalities (11) and (12) imply

r2 + 2 |(x11 − x21)(x12 − x22)| − a2 = 0 (13)

From (13), following three cases are obtained:

(a) if x11 − x21 = 0 or x12 − x22 = 0, then r = a.

Hence the vector x1 − x2 is parallel to anyone of the lines x = 0 or y = 0. See
Figure 1 for positions of the vector x1 − x2.

Figure 1. The positions of vectors x2 − x1 with dT (x1, x2) = dE(x1, x2)

(b) Let x11−x21 6= 0 and x12−x22 6= 0. Then there are the following four cases:

(b.1) x11 − x21 > 0 and x12 − x22 > 0,

(b.2) x11 − x21 > 0 and x12 − x22 < 0,

(b.3) x11 − x21 < 0 and x12 − x22 > 0,

(b.4) x11 − x21 < 0 and x12 − x22 < 0.

(b.1) Let x11 − x21 > 0 and x12 − x22 > 0. From (13), it is obtained

x11 − x21 =
a2 − r2

2(x12 − x22)
(14)

Using the equalities (11) and (14), it is obtained

x12 − x22 =

√
r2 ± a

√
2r2 − a2
2

(15)

From (15), the following cases are obtained:
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(b.1.1) if 2r2−a2 = 0, then we have x11−x21 = x12−x22 = r√
2
. Hence the vector

x1 − x2 is parallel to anyone of the lines y = x or y = −x. See Figure 2 for
positions of the vector x1 − x2.

Figure 2. The positions of vectors x2 − x1 with dT (x1, x2) =
√

2dE(x1, x2)

(b.1.2) if 2r2 − a2 > 0, then we have x11 − x21 = x12 − x22 =

√
r2±a

√
2r2−a2
2 .

The cases (b.2),(b.3) and (b.4) are similar to (b.1). Then there exist eight
intersection points of taxicab circle and Euclidean circle. See Figure 3 for
positions of the vector x1 − x2.

Figure 3. The positions of vectors x2 − x1 with dT (x1, x2) <
√

2dE(x1, x2)

�
Remark 15. From (iii) in Theorem 14, we have

dE(x1, x2) < dT (x1, x2) <
√

2dE(x1, x2). (16)

3. On minimality of the complete system of invariants of vectors

Definition 16. A system {fτ , τ ∈ Q} of MT (2) -invariant functions fτ (x1, x2, x3)
of the systems {x1, x2, x3} in R2T will be called complete if equalities fτ (x1, x2, x3) =

fτ (y1, y2, y3) for all τ ∈ Q imply {x1, x2, x3}
MT (2)∼ {y1, y2, y3}.
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Denote by Kij(X), L(X) and M(X) by the functions p(xi − x1, xj − x1) for
2 ≤ i ≤ j ≤ 3, q(x2 − x1, x2 − x1) and q(x2 − x1, x3 − x1), respectively.
According to Theorem 11, the system

B = {Kij(X), L(X),M(X), 2 ≤ i ≤ j ≤ 3} is a complete system ofMT (2)-invariant
functions of vectors x1, x2, x3 in R2T .

Definition 17. A complete system B = {fτ , τ ∈ Q} of MT (2)-invariant functions
fτ of the system {x1, x2, x3} in R2T will be called minimal if every proper subset of
B is not complete.

Theorem 18. The system B is a minimal complete system of MT (2) -invariants
of vectors x1, x2, x3 in R2T .

Proof. A proof follows from the following Lemmas 19-22.

Lemma 19. The subsystem B \ {K23(X)} is not a complete system of MT (2)-
invariants.

Proof. Consider the following two systems of vectors in R2T :
X = {x1 = (1, 2), x2 = (3, 2), x3 = (2, 4)} and
Y = {y1 = (1, 2), y2 = (3, 2), y3 = (3, 3)}. Prove the lemma for i = 2, j = 3.
Then we have K22(X) = K22(Y ) = 4,K33(X) = K33(Y ) = 5, L(X) = L(Y ) =
0,M(X) = M(Y ) = 0. Since K23(X) and K23(Y ) areMT (2)-invariants, K23(X) =
2, K23(Y ) = 4, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {K23(X)} is not complete. �
Lemma 20. The subsystem B \{Kii(X)} for any i = 2, 3 is not a complete system
of MT (2)-invariants.

Proof. Consider the following two systems of vectors in R2T :
X = {x1 = (1, 2), x2 = (3, 2), x3 = (4, 3)} and
Y = {y1 = (1, 2), y2 = (3, 2), y3 = (4, 4)}. Prove the lemma for i = 3. Then we
have K22(X) = K22(Y ) = 4,K23(X) = K23(Y ) = 6, L(X) = L(Y ) = 0,M(X) =
M(Y ) = 0. Since K33(X) and K33(Y ) are MT (2)-invariants, K33(X) = 10,
K33(Y ) = 13, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {K33(X)} is not complete. Similarly, the subsystem
B \ {K22(X)} is not complete. �
Lemma 21. The subsystem B \ {L(X)} is not a complete system of MT (2) −
invariants.

Proof. Consider the following two systems in R2T :
X = {x1 = (1, 2), x2 = (2, 3), x3 = (2, 1)} and
Y =

{
y1 = (1, 2), y2 = (1 +

√
2, 2), y3 = (1, 2−

√
2)
}
.

Then we have K22(X) = K22(Y ) = 2,K23(X) = K23(Y ) = 0,K33(X) = K33(Y ) =
2,M(X) = M(Y ) = 0. Since L(X) and L(Y ) are MT (2)-invariants, L(X) = 2,
L(Y ) = 0, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {L(X)} is not complete. �
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Lemma 22. The subsystem B \ {M(X)} is not a complete system of MT (2) −
invariants.

Proof. Consider the following two systems in R2T :
X = {x1 = (1, 2), x2 = (2, 0), x3 = (5, 4)} and
Y = {y1 = (1, 2), y2 = (2, 0), y3 = (−3, 0)}.
Then we have K22(X) = K22(Y ) = 5,K23(X) = K23(Y ) = 0,K33(X) = K33(Y ) =
20, L(X) = L(Y ) = 4. Since M(X) and M(Y ) are MT (2)-invariants, M(X) = 12,
M(Y ) = −12, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {M(X)} is not complete. �
Lemmas 19-22 imply that the system B is a minimal complete system ofMT (2)-

invariants. The proof of the theorem is completed. �

4. On the Euclidean regular polygons and taxicab regular polygons

The following definitions about the taxicab polygons are given in [2, p.27-28]
"As in the Euclidean plane, a polygon in the taxicab plane consists of three or
more coplanar line segments; the line segments (sides) intersect only at endpoints;
each endpoint(vertex) belongs to exactly two line segments; no two line segments
with a common endpoint are collinear. If the number of sides of a polygon is n for
n ≥ 3 and n ∈ N , then the polygon is called an n-gon. The following definitions
for polygons in the taxicab plane are given by means of the taxicab lengths instead
of the Euclidean lengths:

Definition 23. A polygon in the plane is said to be taxicab equilateral if the taxicab
lengths of its sides are equal.

Definition 24. A polygon in the plane is said to be taxicab equiangular if the
measures of its interior angles are equal.

Definition 25. A polygon in the plane is said to be taxicab regular if it is both
taxicab equilateral and equiangular.

Definition 24 does not give a new equiangular concept because the taxicab and
the Euclidean measure of an angle are the same. That is, every Euclidean equian-
gular polygon is also the taxicab equiangular, and vice versa. However, since the
taxicab plane has a different distance function, Definition 23 and therefore Defini-
tion 25 are new concepts."
The following theorem gives us conditions of the taxicab regularity of Euclidean

regular polygons in terms of MT (2)-invariants, vice versa.

Theorem 26. Let x1, x2, . . . , xn be vertices of an n-sided polygon in the Cartesian

plane. Assume that {xi+1, xi}
MT (2)∼ {xi+1, xi+2} and the angle between xi − xi+1

and xi+2−xi+1 has measure θ = π(n−2)
n radian for all 1 ≤ i ≤ n. Then the n-sided

polygon is a taxicab regular n-gon and a Euclidean regular n-gon, where n = 4 or
n = 8.
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Proof. For simplicity, let us consider two vertices x1 = (cosα, sinα) for α ∈ (0, π/4)

and x2 = (0, 0). Besides, let us start from the vertices. Put i = 1 and {x2, x1}
MT (2)∼

{x2, x3}. According to Theorem5, we have {x1 − x2}
D4∼ {x3 − x2}. Then there ex-

ist 8 forms vectors x3−x2 such that x3−x2 = (sinα, cosα), x3−x2 = (−sinα, cosα),
x3 − x2 = (−cosα, sinα),x3 − x2 = (−cosα,−sinα), x3 − x2 = (sinα,−cosα),
x3 − x2 = (−sinα,−cosα) and x3 − x2 = (−cosα,−sinα).

(i) Let us consider x3 − x2 = (sinα, cosα). Then the angle between x1 − x2 and
x3 − x2 has measure θ < π/2. Then n ≤ 3. Assuming n ≥ 3, n = 3 is obtained .
So, θ = π/3 and α = π/12.

Now let us consider {x3, x2}
MT (2)∼ {x3, x4}. Since n = 3, we obtain that x4 = x1.

Clearly, this is a contradiction. Then {x3, x2} is notMT (2)−equivalent to {x3, x4}.
That is, n 6= 3.

(ii) Let us consider x3 − x2 = (−sinα, cosα). Then the angle between x1 − x2
and x3 − x2 has measure θ = π/2. Then n = 4. Since n = 4, we have x5 =

x1. Let us consider {x3, x2}
MT (2)∼ {x3, x4} and {x4, x3}

MT (2)∼ {x4, x5}. Then
the angles between xi − xi+1 and xi+2 − xi+1 for i = 1, 2, 3 have measures θ =
π/2. Furthermore, we obtain dT (xi+1, xi) = dT (xi+1, xi+2) and dE(xi+1, xi) =
dE(xi+1, xi+2). That is, this is a taxicab square.

(iii) Let us consider x3 − x2 = (−cosα, sinα). Then the angle between x1 − x2
and x3 − x2 has measure θ = π − 2α > π/2. Then n > 4. Let us consider

g =

(
−cos2α −sin2α
sin2α −cos2α

)
. Since the angle between x2 − x3 and x4 − x3 has mea-

sure θ = π − 2α, we have g (x2 − x3) = x4 − x3. This implies
x4−x3 = (−cos3α, sin3α). According to Theorem5, {x3, x2}

MT (2)∼ {x3, x4} implies
{x2 − x3}

D4∼ {x4 − x3}.
So, {x2 − x3 = (cosα,−sinα)} D4∼ {x4 − x3 = (−cos3α, sin3α)} is obtained.
From Theorem 11, we have [(cosα)(−sinα)]

2
= [(−cos3α)(sin3α)]

2. Then this
equation implies α = π/8. That is, n = 8. Then the angles between xi − xi+1 and
xi+2−xi+1 for i = 3, . . . , 7 have measures θ = π−2α and g (xi − xi+1) = xi+2−xi+1.
This implies xi+2 − xi+1 = (−cos(2i− 1)α, sin(2i− 1)α) and x9 = x1. This
shows that the angles between xi − xi+1 and xi+2 − xi+1 for i = 1, 2, . . . , 7 have
measures θ = 3π/4. Furthermore, we obtain dT (xi+1, xi) = dT (xi+1, xi+2) and
dE(xi+1, xi) = dE(xi+1, xi+2). That is, this is a taxicab regular octagon.

If α = 0 radians or α = π/2 radians, the edges of the polygon are parallel to the
lines x = 0 and y = 0. The polygon is a taxicab regular square.
If α = π/4 radians, the edges of the polygon are parallel to the lines y = x and

y = −x. The polygon is a taxicab regular square.
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Proofs of the cases x3−x2 = (−cosα,−sinα), x3−x2 = (sinα,−cosα),x3−x2 =
(−sinα,−cosα) and x3 − x2 = (−cosα,−sinα) are similar to the proof of (i),(ii)
and (iii). Hence, we obtain that n = 4 or n = 8. �
Corollary 27. (1) According to Theorem 26, a taxicab regular octagon is a

Euclidean regular iff the slopes of sides of a taxicab regular octagon are
equal to m = ±tan(π/8) or m = ±tan(3π/8).

(2) According to Theorem26, a Euclidean regular octagon is a taxicab regular
iff the slopes of sides of a Euclidean regular octagon are equal to m =
±tan(π/8) or m = ±tan(3π/8).

(3) Every taxicab regular square is also Euclidean regular , vice versa.

Remark 28. (i) According to Corollary 27, all taxicab regular octagons are not
Euclidean regular, vice versa.
(ii) According to Corollary 27, all taxicab regular squares are Euclidean regular,
vice versa.

Corollary 27 and Remark 28 that we derived by using MT (2)-invariants, are the
same conclusions derived in [2] and [6].

5. The proposed algorithm for taxicab regular polygons

Let x1 and x2 be vertices of a side of any polygon and n be the number of
sides of polygon in the taxicab plane. Consider a side by x1x2. Since angles in
taxicab geometry are measured as in Euclidean geometry, each interior angle of a
regular polygon is measured θ = π(n−2)

n radians. Let us introduce the algorithm to
construct taxicab regular n-gon having x1x2 as side for a definite value of n, with
the following steps:

Step 1 The side x1x2 is rotated through β = π(n+2)
n radians clockwise about the

point x2 and is obtained a side x2z3 such that z3 = x2 + g(x1 − x2), where

g =

(
cosβ sinβ
−sinβ cosβ

)
.

Then dE(x1, x2) = dE(z3, x2) and the angle between vectors
x1 − x2 and z3 − x2 are equal to θ.

Step 2 For any point x3 on the line passes points x2 and z3, by solving equations
dT (x1, x2) = dT (x3, x2) and p (x1 − x2, x3 − x2) = dE(x1, x2)dE(x2, x3)cosθ,
x3 is obtained.

Step 3 Similarly, for all i = 2, . . . , n − 1, the side xixi+1 is rotated through β =
π(n+2)

n radians clockwise about the point xi+1 and is obtained a side xi+1zi+2
such that zi+2 = xi+1 + g(xi − xi+1). Then dE(xi, xi+1) = dE(xi+1, zi+2)
and the angle between vectors xi − xi+1 and zi+2 − xi+1 are equal to θ.

Step 4 For any point xi+2 on the line passes points zi+2 and xi+1, by solving
equations dT (xi, xi+1) = dT (xi+2, xi+1) and p (xi − xi+1, xi+2 − xi+1) =
dE(xi, xi+1)dE(xi+1, xi+2)cosθ, xi+2 is obtained.
Thus, all vertices x3, x4, . . . , xn+1 of the polygon are obtained.
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Step 5 If xn+1 = x1 and p (xn − x1, x2 − x1) = dE(x1, xn)dE(x1, x2)cosθ, then
this is a taxicab regular n-gon.

Step 6 If xn+1 6= x1 , then there is no taxicab regular n-gon having x1x2 as a side.

Remark 29. According to this algorithm, for definite value of n, one can constract
taxicab regular 2n-gons, and determine if there exist (2n− 1)-gons, having given a
line segment as a side. Clearly, this algorithm is also a tool to give an answer to
specal cases of open probleme given in [2].

5.1. Illustrations. In this subsection various examples are given to demonstrate
the steps of the proposed algorithm for taxicab regular polygons.

Example 30. Consider a hexagon with vertices x1 = (1, 1) , x2 = (0, 0) , x3 =
(−1.57735, 0.42265) , x4 = (−2, 2) , x5 = (−1, 3) , x6 = (0.57735, 2.57735). This
polygon is a taxicab regular hexagon(See Figure 4).

Figure 4. The taxicab regular hexagon

Example 31. Consider a 10-gon with vertices

x1 = (2, 3) , x2 = (1, 2) ,

x3 = (−0.726543, 1.72654) , x4 = (−2.05146, 2.40162) ,

x5 = (−2.72654, 3.72654) , x6 = (−2.45309, 5.45309) ,

x7 = (−1.45309, 6.45309) , x8 = (0.273457, 6.72654) ,

x9 = (1.59838, 6.05146) , x10 = (2.27346, 4.72654) .

This polygon is a taxicab regular 10-gon.(See Figure 5).

6. Taxicab regularity of polygons with an odd number of sides

The open problem for (2n− 1)-gons posed by [2]: "Does there exist any taxicab
regular (2n−1)-gons? "As the given algorithm in Section 5,the following procedure
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Figure 5. The taxicab regular 10-gon

is also a tool to give answer to special cases of open problem given in [2]. That is,
for a definite value of n, and given a line segment x1x2, this procedure determines
if (2n− 1)-gon having x1x2 as a side exist or not."
Since angles in taxicab geometry are measured as in Euclidean geometry, it is

obtained that each interior angle of a regular polygon has measure θ = π(n−2)
n

radians.
Let us consider a Euclidean regular (2n−1)-gon with vertices x1, . . . , x2n−1. For

simplicity, let us take a side x1x2 and denote two vertices by x1 = y1, x2 = y2. Then
there exists a point yi+2 on the line parallel to the sides xi+1xi+2 that passes through
the point yi+1 such that dT (x1, x2) = dT (yi+1, yi+2) for each i = 1, . . . , 2n − 3.
Therefore, the angle between sides yiyi+1 and yi+1yi+2 for all i = 1, . . . , 2n − 3

equals to θ = π(n−2)
n radians.

But the angle between sides y2n−2y2n−1 and y2n−1y1 is not equal to θ, and the
inequality dT (y1, y2) 6= dT (y2n−1, y1) holds. If both of these conditions hold at the
same time, then (2n − 1)-gon with vertices y1, y2, ..., y2n−1 is regular, otherwise it
is not.

6.1. Illustrations. In this subsection, we give examples related to the procedure
introduced above. We have implemented the algoritm proposed in Section 5 in the
computer program Mathematica for the examples given in 5.1 Illustrations and 6.1
Illustrations .
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Example 32. Let us consider Euclidean regular triangle with vertices x1 = (2, 1) , x2 =
(1, 1) , x3 = (1.5, 1.86603). Let a side of taxicab regular triangle be x1x2. Let us
denote vertices x1, x2 by y1, y2,respectively.
Then according to the above procedure, the point y3 = (1.36603, 1.63397) on the

line parallel to the sides x2x3 that passes through the point y2 such that dT (x1, x2) =
dT (y2, y3)is found. Then the triangle with vertices y1, y2 and y3is not taxicab regu-
lar. So there is no taxicab regular triangle with the side y1y2. (See Figure 6).

Figure 6. While the triangle with vertices x1, x2, x3 is Euclidean
regular, the triangle with vertices y1, y2, y3 is not taxicab regular.

Example 33. Let us consider Euclidean regular pentagon with vertices

x1 = (2, 1) , x2 = (1, 1) ,

x3 = (0.690983, 1.95106) , x4 = (1.5, 2.53884) ,

x5 = (2.30902, 1.95106) .

Let a side of taxicab regular pentagon be x1x2. Let us denote vertices x1, x2 by
y1, y2,respectively. Then according to the above procedure, the points

y3 = (0.754763, 1.75476) , y4 = (1.33395, 2.17557) ,

y5 = (1.91315, 1.75476)

such that dT (x1, x2) = dT (y2, y3) = dT (y3, y4) = dT (y4, y5) is found. Clearly, the
angle between sides y4y5 and y5y1 is not equal to θ, and the inequalty dT (y1, y2) 6=
dT (y5, y1) holds. The polygon with vertices x1, x2, x3, x4, x5 is a Euclidean regular
pentagon and but it is not a taxicab regular pentagon with vertices y1, y2, y3, y4, y5.(See
Figure 7).
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Figure 7. While the pentagon with vertices x1, x2, x3, x4, x5 is
Euclidean regular,the pentagon with vertices y1, y2, y3, y4, y5 is not
taxicab regular.

7. Conclusions

Finding of an algebraic solution for non-existence of taxicab (2n − 1)-gon is
diffi cult. In the special case, choosing an initial side in the algorithm, an algebraic
solution can be easily found for n = 3. Thus, in our paper, the solution of this
problem is given numerically. However, the conjecture in [2] still needs to be proven
geometrically or algebrically.
Acknowledgements. The authors are very grateful to the reviewer for helpful
comments and valuable suggestions.
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[2] Çolakoğlu, H. B., Kaya, R., Regular polygons in the taxicab plane, KoG, 12 (2008), 27-33.
[3] Ekici, Kocayusufoğlu, İ., Akça, Z. The norm in taxicab geometry, Turk. J. Math, 22(3) (1998),

295-307.
[4] Goulson, D., Darvill, B., Niche overlap and diet breadth in bumblebees; are rare species more

specialized in their choice of flowers?, Apidologie, 35 (2004), 55-63.
[5] Greub, W., Linear algebra, Berlin-Heidelberg-New York:Springer-Verlag, 1967.
[6] Hanson, J. R., Regular polygons in taxicab geometry, Int. J. Math. Educ. Sci. Technol.,

45(7) (2014), 1084-1095.
[7] Legendre, P., Gallagher, E., Ecologically meaningful transformations for ordination of species

data, Oecologia, 129 (2001), 271-280.
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