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PRO-C COMPLETIONS OF CROSSED SQUARES OF
COMMUTATIVE ALGEBRAS

HATICE GÜLSÜN AKAY

Abstract. In this paper we give the explicit construction of a pro-C comple-
tion functor which is defined in the category of crossed squares of commutative
algebras. Afterwards, we study some functorial properties of this pro-C com-
pletion process.

1. Introduction

A profinite group [9] occurs in a wide range of problems related to number the-
ory, commutative algebra, algebraic geometry and algebraic topology. Although
the category of profinite groups forms a natural extension of the category of fi-
nite groups, it carries a richer structure. Because it has some categorical objects
and constructions which do not exist in finite case; e.g. projective limits and free
products. The existence of such constructions in extended category leads to the
definition of profinite analogues of the usual constructions of combinatorial group
theory, such as free groups and presentations of group by generators and relations.

The theory of crossed modules [10] plays an important role in combinatorial and
cohomological group theory. Profinite crossed modules are introduced in [7]. They
examined the pro-C completion of crossed modules for a full class of finite groups C.
The crossed square version of this completion process is given in [3]. The definition
of crossed modules over a commutative algebra is given in [8]; also see [5] for the
general case. Crossed squares in the category of commutative algebras studied in
[1, 4].

2. Preliminaries

In this paper, k will be a fixed commutative ring with 1 6= 0 for abstract cases
and k will be a fixed commutative profinite ring with 1 6= 0 for topological cases.
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All k-algebras will be commutative and associative. C will denote a class of finite k-
algebras which is closed under the formation of subalgebras, homomorphic images,
finite products and which contains at least one non-trivial algebra. Pro-C algebras
are profinite algebras whose finite quotients are in C. The class C will be assumed
to be full in the sense that C must also be closed under extension of algebras.

Throughout this paper we denote an action of P on M by pm, where P and M
are k-algebras. We recall the definition of a crossed module, and its pro-C analogue.

A crossed module [8] is a k-algebra homomorphism ∂ : M → P together with an
action of P on M such that following two Peiffer relations hold (for all m,m′ ∈M
and p ∈ P ):

CM1) ∂(pm) = p∂(m),
CM2) ∂(m)m′ = mm′.

We denote such a crossed module by (M,P, ∂).

If (M,P, ∂) and (M ′, P ′, ∂′) are two crossed modules, a crossed module mor-
phism (φ, ψ) : (M,P, ∂)→ (M ′, P ′, ∂′) is a tuple which consists of k-algebra homo-
morphisms, φ : M →M ′, ψ : P → P ′ such that ψ∂ = ∂′φ and φ(pm) = ψ(p)φ(m).
Thus we get the category of crossed modules, denoted by XMod .

There are special classes of morphisms, those in which P = P ′ and ψ is the
identity morphism. For fixed P, a morphism (φ, idP ) : (M,P, ∂) → (M ′, P, ∂′)
will be called a morphism of crossed modules over P. Then we have a subcategory
XMod/P of XMod.

Let (M,P, ∂) be a crossed module. (M1, P1, ∂1) is a subcrossed module of
(M,P, ∂) if:

i) M1 is a subalgebra of M and P1 is a subring of P,
ii) ∂1 = ∂|M1

, the restriction of ∂ to M1,
iii) The action of P1 on M1 is induced by the action of P on M.

A subcrossed module (M1, P1, ∂1) of (M,P, ∂) is a crossed ideal if:

i) P1 is an ideal of P and M1 is an ideal of M,
ii) pm1 ∈M1, for all p ∈ P,m1 ∈M1,
iii) p1m ∈M1, for all p1 ∈ P1,m ∈M.

A pro-C crossed module (M,P, ∂) is a crossed module in which M and P are
pro-C k-algebras, ∂ is a continuous k-algebra homomorphism and the action of P
on M is a continuous P -action [6].

A morphism of pro-C crossed modules

(φ, ψ) : (M,P, ∂)→ (M ′, P ′, ∂′)

is a morphism of the underlying crossed modules in which both φ and ψ are con-
tinuous morphisms of pro-C k-algebras. Thus we get the categories Pro-C.XMod
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and similarly Pro-C.XMod/P for a fixed codomain P ; we therefore obtain the
forgetful functor:

UXMod : Pro-C.XMod→ XMod.

Recall from [8] that a cat1-algebra is a triple (E, s, t), where E is an k-algebra
and s, t are endomorphisms of E satisfying the following conditions:

i) st = t and ts = s
ii) [Kers,Kert] = 0.

It is well known that there is an equivalence of between the categories XMod
and Cat1(Alg).

A pro-C cat1-algebra is a cat1-algebra (E, s, t) in which E is a pro-C algebra and
s and t are continuous endomorphisms of E. A morphism of pro-C cat1-algebra is
a morphism

φ : (E, s, t)→ (E′, s′, t′)

of the underlying cat1-algebras such that φ : E → E′ is a continuous morphism
of pro-C algebras. Thus we get the category of pro-C cat1-algebras, denoted by
Pro-C.Cat1(Alg). There is a forgetful functor:

UCAlg : Pro-C.Cat1(Alg)→ Cat1(Alg)

It is proven in [6] that, there exists an equivalence of categories Pro-C.XMod
and Pro-C.Cat1(Alg) compatible with the forgetful functors, in the sense of the
equivalence between XMod and Cat1(Alg).

3. Crossed Squares and their Pro-C Analogue

3.1. Crossed squares. The following definition is due to [1].

A crossed square of commutative algebras is a commutative diagram:

together with actions of P on L, M and N (there are thus actions of N on L and
M via µ′, and of M on L and N via µ) and a function h : M ×N → L such that:

1) The maps λ, λ′, µ, µ′ and the composite µλ = µ′λ′ are crossed modules,
2) The maps λ, λ′ preserve the action of P ,
3) kh(m,n) = h(km, n) = h(m, kn),
4) h(m+m′, n) = h(m,n) + h(m′, n),
5) h(m,n+ n′) = h(m,n) + h(m,n′),
6) ph(m,n) = h(pm, n) = h(m, pn),
7) λh(m,n) = mµ′(n),
8) λ′h(m,n) = µ(m)n,
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9) h(λ(l), n) = lµ′(n),
10) h(m,λ′(l)) = µ(m)l

for all n, n′ ∈ N, m,m′ ∈ M, p ∈ P, l ∈ L, k ∈ k. We denote such a crossed
square by (L,M,N, P ).

Let µ and µ′ are normal subalgebra inclusions and L = M ∩N, with h is given
by the multiplication in P, i.e., h(m,n) = mn. Then, we have the crossed square:

A morphism of crossed square

Φ = (Φ1,Φ2,Φ3,Φ4) : (L1,M1, N1, P1)→ (L2,M2, N2, P2),

consists of homomorphisms:

Φ1 : L1 → L2, Φ2 : M1 →M2,
Φ3 : N1 → N2, Φ4 : P1 → P2,

such that the diagram commutes:

and
Φ1h(m1, n1) = h(Φ2(m1),Φ3(n1)),

for all m1 ∈M1, n1 ∈ N1, and the homomorphisms Φ1,Φ2,Φ3 are Φ4-equivariant.

Thus we get the category of crossed squares, denoted by Crs2.

There are special classes of morphisms, those in which P1 = P2 and Φ4 is the
identity morphism. For a fixed P, such a morphism

Φ = (Φ1,Φ2,Φ3, id) : (L1,M1, N1, P )→ (L2,M2, N2, P ),

will be called a morphism of crossed squares over P , yields a subcategory Crs2/P .

A crossed square
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is a subcrossed square of

if,
i) L1 is a subalgebra of L, M1 is a subring of M, N1 is a subring of N, P1 is
a subring of P,

ii) λ1 is restriction of λ to L1, µ1 is restriction of µ to M1, λ
′
1 is restriction of

λ′ to L1, µ
′
1 is restriction of µ

′ to N1,

iii) Actions of P1 on L1,M1 and N1 are induced by the actions of P on L,M
and N, respectively.

iv) h1 : M1 ×N1 → L1 is the restriction of h : M ×N → L to M1 ×N1.

A subcrossed square

is an ideal of

if,
i) P1 is an ideal of P, M1 is an ideal of M, N1 is an ideal of N,

ii) For all p ∈ P , l1 ∈ L1, m1 ∈M1 and n1 ∈ N1,

pl1 ∈ L1,
pm1 ∈M1,
pn1 ∈ N1.
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iii) For all p1 ∈ P1, l ∈ L, m ∈M and n ∈ N ,
p1l ∈ L1,
p1m ∈M1,
p1n ∈ N1.

Let

be a crossed square and

be an ideal of (L,M,N, P ). Let λ is induced by λ, µ is induced by µ, λ′ is induced
by λ′, µ′ is induced by µ′. Then there are actions of P/P1 on L/L1, M/M1 and
N/N1 given by

(p+ P1)(l + L1) = (pl) + L1,
(p+ P1)(m+M1) = pm+M1,
(p+ P1)(n+N1) = pn+N1

and N/N1 on L/L1 and M/M1 via µ′, i.e.,

(n+N1)(l + L1) = µ′(n)l + L1,
(n+N1)(m+M1) = µ′(n)m+M1

and then M/M1 acts on L/L1 and N/N1 via µ, i.e.,

(m+M1)(l + L1) = µ(m)l + L1,
(m+M1)(n+N1) = µ(m)n+N1.

for all p ∈ P , l ∈ L, m ∈ M and n ∈ N . The conditions for (L1,M1, N1, P1) to be
ideal in (L,M,N, P ) ensure that the actions are well defined. Let h1 : M1×N1 →
L1 is defined by h(m+M1, n+N1) = h(m,n) + L1. It is clear that:

is a crossed square. It is called the quotient crossed square of (L,M,N, P ) by
(L1,M1, N1, P1) and denoted by (L,M,N, P )/(L1,M1, N1, P1).
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3.2. Pro-C crossed squares. A pro-C crossed square of algebras

is a crossed square in which L,M,N and P are pro-C algebras, λ, λ′, µ, µ′ are contin-
uous homomorphisms, all the actions are continuous and the h-map is continuous.

A morphism

Φ = (Φ1,Φ2,Φ3,Φ4) : (L1,M1, N1, P1)→ (L2,M2, N2, P2)

of pro-C crossed squares is a morphism of the underlying crossed squares in which all
the maps Φ1,Φ2,Φ3 and Φ4 are continuous morphisms of pro-C algebras. Thus we
get the categories Pro-C.Crs2 and similarly Pro-C.Crs2/P for a fixed codomain
P ; and we also get the forgetful functor:

UCrs2 : Pro-C.Crs2 → Crs2.

Recall the corresponding situation for k-algebras; the forgetful functor

UAlg : Pro-C. Alg→ Alg

has a left adjoint, known as the pro-C completion functor, which we will denote by
a “ ̂ ”.
This is defined as follows:

Let P be a k-algebra and let Ω(P ) be the directed set of finite index ideals W
of P with P/W ∈ C, then

P̂ = lim←−
W∈Ω(P )

P/W.

We will sometimes write WfinP as indicating that W ∈ Ω(P ). This notation is
useful in as it is more suggestive of the actual concept involved, but can also become
somewhat cumbersome so we will use both notations.

We wish to see if the crossed square forgetful functor

UCrs2 : Pro-C.Crs2 → Crs2

also has a left adjoint. The obvious approach using some idea of finite index ideals
is technically messy so we use an equivalence formulation involving Loday’s notion
of cat2-algebras.
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4. Cat2-algebras and their Pro-C Analogue

4.1. Cat2-algebras. A cat2-algebra [1] is a 5-tuble (E, s1, t1, s2, t2) where (E, si, ti),
i = 1, 2 are cat1-algebras and

sisj = sjsi, titj = tjti, sitj = tjsi

for i, j = 1, 2, i 6= j.

If (E, s1, t1, s2, t2) and (E′, s′1, t
′
1, s

′
2, t

′
2) are cat2-algebras a cat2-algebra mor-

phism:
φ : (E, s1, t1, s2, t2)→ (E′, s′1, t

′
1, s

′
2, t

′
2)

is an algebra homomorphism φ : E → E′ such that:

s′1φ = φs1,
t′1φ = φt1,

s′2φ = φs2,
t′2φ = φt2.

Thus we get the category of cat2-algebras, denoted by Cat2(Alg).

Proposition 1. There is an equivalence of categories between the category of cat2

-algebras and that of crossed squares.

Proof. The cat1-algebra (E, s1, t1) will give us a crossed module

∂ : C → B

with C =Kers, B =Ims and ∂ = t | C, but as the two cat1 -algebra structures are
independent, (E, s2, t2) restricts to give cat1-algebra structures on C and B and
makes ∂ a morphism of cat1-algebras. Thus we get a morphism of crossed modules

where each morphism is a crossed module for the natural action, i.e. multiplication
in E. It remains to produce an h-map, but it is given by the multiplication within
E since if x ∈Kers2∩Ims1 and y ∈Ims2∩Kers1 then xy ∈Kers1∩Kers2. It is easy
to check the crossed squares axioms.
Conversely, if
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is a crossed square, then we can think of it as a morphism of crossed modules

Using the equivalence between crossed modules and cat1-algebras this gives a mor-
phism

∂ : (LoN, s, t) −→ (M oR, s′, t′)
of cat1-algebras. There is an action of M oR on LoN given by

(m, r)(l, n) = (rl + ∂(m)l + h(m,n), rn+mn)

for all (m, r) ∈ M o R and (l, n) ∈ L o N . Using this action, we thus form its
associated cat1-algebra with algebra (LoN)o(MoR) and induced endomorphisms
s1, t1, s2, t2. �

4.2. Pro-C cat2-algebras.

Definition 2. A pro-C cat2-algebra is a cat2 -algebra (E, s1, t1, s2, t2) in which E
is a pro-C algebra and s1, s2, t1 and t2 are continuous endomorphisms of E.

A morphism of pro-C cat2-algebra

φ : (E, s1, t1, s2, t2)→ (E′, s′1, t
′
1, s

′
2, t

′
2)

is a morphism of the underlying cat2-algebras such that φ is a continuous morphism
of pro-C algebras. Thus we get the category of pro-C cat2-algebras, denoted by Pro
-C.Cat2(Alg).

There is a forgetful functor:

UC2Alg : Pro−C.Cat2(Alg)→ Cat2(Alg).

Theorem 3. There exists an equivalence of categories Pro-C.Crs2 and Pro-C.Cat2(Alg)
compatible with the forgetful functors, in the sense of the equivalence between Crs2

and Cat2(Alg), i.e. the following diagram commutes:

Proof. In fact, if
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is a pro-C crossed square, then E = (L o M) o (N o P ) is a pro-C algebra
and the endomorphisms s1, s2, t1 and t2, given before, are continuous, so result-
ing (E, s1, t1, s2, t2) is a pro-C cat2-algebra. Similarly if (E, s1, t1, s2, t2) is a pro-C
cat2 -algebra then

is a pro-C crossed square. �

This lemma will enable us to prove the existence of a left adjoint for

UCrs2 : Pro-C.Crs2 −→ Crs2

by constructing one for

UC2Alg : Pro -C.Cat2(Alg) −→ Cat2(Alg).

This latter construction will need projective limit within Pro-C.Cat2(Alg) and
so we will briefly look at their construction as it sheds more light on the pro-C
completion functor that will result from their use.

5. The Completion Process

Given a projective system F : I → Cat2(Alg), one notes that F is a projec-
tive system of algebras together with four endomorphisms of projective systems,
s1, s2, t1, t2 : F → F satisfying

sisj = sjsi, titj = tjti, sitj = tjsi

for i, j = 1, 2, i 6= j and [Kers1,Kert1] = 0, [Kers2,Kert2] = 0. We form lim←−F
by taking the limit of this underlying system of pro-C algebras together with the
induced endomorphism lim←− s and lim←− t. Writing the result as (F , s1, t1, s2, t2), we
only need to check the conditions [Kers1,Kert1] = 0 and [Kers2,Kert2] = 0.
However F can be realized as a subalgebra of the product

∏
i∈I F (i) and

s1((xi)) = (s1(i)xi, t1(xi)) = (t1(i)xi),

similarly for s2, t1 and t2. So the commutator subalgebras [Kers1,Kert1] and
[Kers2,Kert2] are trivial for each i in I.
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Proposition 4. A pro-C completion functor from the category Cat2(Alg) to the
category Pro-C.Cat2(Alg) exists, (i.e. the forgetful functor UC2Alg has a left ad-
joint).

Proof. An exact sequence

0 −→ (E′, s′1, t
′
1, s

′
2, t

′
2)

u−→ (E, s1, t1, s2, t2)
v−→ (E′′, s′′1 , t

′′
1 , s

′′
2 , t

′′
2) −→ 0

of cat2-algebras is an exact sequence

0 −→ E′ −→ E −→ E′′ −→ 0

of the underlying algebras and continuous maps compatible with the source and
target maps. In this situation, we say that the cat2-algebra (E′′, s′′1 , t

′′
1 , s

′′
2 , t

′′
2) is

the quotient of (E, s1, t1, s2, t2) by the ideal (E′, s′1, t
′
1, s

′
2, t

′
2). The latter is of finite

index in (E, s1, t1, s2, t2) if E′ is finite.

Given any cat2-algebra (E, s1, t1, s2, t2) the set of its ideals (I, s′1, t
′
1, s

′
2, t

′
2) of

finite index with E/I ∈ C is directed by the inclusion so we can form an inverse
system of finite quotient of (E, s1, t1, s2, t2) and take its limit within the category
of pro-C cat2-algebras. (As usual one considers each finite cat 2-algebra as a pro-C
one having the discrete topology.)

Thus we define a pro-C completion functor:˜: Cat2(Alg)→ Pro-C.Cat2(Alg) (1)

by

˜(E,s1,t1,s2,t2 ) = lim←−{finite quotients of (E, s1, t1, s2, t2) by (I, s′1, t
′
1, s

′
2, t

′
2)}.

Categorically this functor is left adjoint to the forgetful functor from Pro-
C.Cat2(Alg) to Cat2(Alg). �

Proposition 5. A pro-C completion functor from Crs2 to Pro-C.Crs2 exists (i.e.
the forgetful functor UCrs2 has a left adjoint).

Proof. In the diagram

we already found that (1) is the left adjoint functor to right vertical functor. This
induces a left adjoint functor to left vertical functor via the equivalence of categories.

�
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Remark 6. One can attempt to use the functors defining the two equivalence to give
an “explicit” description of this pro-C completion functor, but in what follows we
shall merely use its existence and the universal property that it satisfies to compare
it with the individual algebras involved.

Notation 7. We denote the pro-C completion of the crossed square ( ˜(L,M ,N ,P )
or less accurately, (L̃, M̃ , Ñ , P̃ ) ),as follows:

It is natural to compare this pro-C completion (L̃, M̃ , Ñ , P̃ ) with the pro-C com-
pletions L̂, M̂ , N̂ , P̂ and λ̂, µ̂, λ̂′, µ̂′ of the individual pieces of data involved. One
may even wonder why

is not itself always the same as,

To start the study of this problem we first look at P̃ .

Proposition 8. For any crossed square (L,M,N, P ), we have P̃ ∼= P̂ .

Proof. This follows from an adjoint functor argument: There is a forgetful functor

R : Crs2 → Alg

given by R(L,M,N, P ) = P also an analogous one

RpC : Pro-C.Crs2 → Pro-C.Alg.

These have left adjoints L and LpC defined by L(P ) = (P, P, P, P )
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with the h-map given by h(p, p′) = pp′ for all p, p′ ∈ P and similarly for LpC .
Then, we get the diagram:

The right adjoint diagram commutes, so the left adjoint diagram commutes up to
isomorphism, i.e.

˜(P ,P ,P ,P ) ' (P̂ , P̂ , P̂ , P̂ ),

but better we have a sequence of isomorphisms: for a pro-C algebra H,

Pro-C.Alg(RpC ˜(L,M ,N ,P ), H)
∼= Pro-C.Crs2( ˜(L,M ,N ,P ),LpC(H))
∼= Crs2((L,M,N, P ), UCrs2LpC(H))
∼= Crs2((L,M,N, P ), LUC2Alg(H)) by observation
∼= Alg(R(L,M,N, P ), UAlg(H))
∼= Alg(P,UAlg(H))
∼= Pro-C.Alg(P̂ ,H)

as required; hence P̂ ∼= P̃ , independent from L,M,N are. �

In order to study the conditions that yields the isomorphism between L̃, M̃ , Ñ

and L̂, M̂ , N̂ , respectively; we introduce a condition called “cofinality”.

Let (L,P, ∂) be a crossed module and write ΩP (L) for the directed subset of
Ω(L) the set of finite index ideals of L, consisting of those L1 ∈ Ω(L), L/L1 ∈ C,
which are P -invariant. We will say that (L,M,N, P ) satisfies the cofinal condition
if ΩP (L) is cofinal in Ω(L). It was shown in [6] that if (L,P, ∂) satisfies the cofinality
condition, then L̃ ∼= L̂.
Let
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be a crossed square and write ΩP (L) for the directed subset of Ω(L) the set of finite
index ideals of L, given above.

We say that (L,M,N, P ) satisfies the cofinal condition if ΩP (L) is cofinal in
Ω(L), ΩP (M) is cofinal in Ω(M) and ΩP (N) is cofinal in Ω(N). Note that ΩP (L) ⊆
ΩM (L) and ΩP (L) ⊆ ΩN (L) so if ΩP (L) is cofinal in Ω(L), then ΩM (L) and ΩN (L)
are cofinal in Ω(L).

Proposition 9. If P ∈ C, then any crossed square

satisfies the cofinality condition.

Proof. Given any L1 ∈ Ω(L), let

L′1 =
⋂
p∈P

pL1

Then, L′1 is P -invariant and as P in C, L′1 is of finite index L/L′1 ∈ C. As L′1 is
contained in L1, so ΩP (L) is cofinal in Ω(L). Similarly, we can show that ΩP (M)
and ΩP (N) are cofinal in Ω(L). This completes the proof. �

Remark 10. Let C be k-algebra, letM(C) be the commutative k-algebra of multi-
pliers of C. Recall that a multiplier of C is a linear mapping λ : C → C such that
for all c, c′ ∈ C; λ(cc′) = λ(c)c′, see [2] for more details.

Theorem 11. If (L,M,N, P )

satisfies the cofinality condition, then L̃ ∼= L̂, M̃ ∼= M̂, Ñ ∼= N̂ .

Proof. Since ΩP (M) is cofinal in Ω(M) and ΩP (N) is cofinal in Ω(N), M̂ ∼= M̃

and N̂ ∼= Ñ . On the other hand since ΩP (L) is cofinal in Ω(L), L̂ ∼= L̃.

To check the axioms we need an explicit description of λ̂ : L̂→ M̂, µ̂ : M̂ → P̂ ,

λ̂′ : L̂ → N̂ , µ̂′ : N̂ → P̂ , µ̂λ = µ̂′λ′ : M̂ → P̂ and the h-map ĥ : M̂ × N̂ → L̂.
Given UfinP, there is a composed homomorphism M → P → P/U.

Take KU to be its kernel then since µ is P -equivariant and P/U is finite, it
follows that KU is in ΩP (M) and that U ⊆ MP (M/KU ). Similarly, there is a
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composed homomorphism L → M → M/KU . Take TU to be its kernel then since
λ is M -equivariant and P/U is finite, it follows that TU is in ΩM (L) and that
KU ⊆MP (L/TU ). On the other hand there is also composed homomorphism L→
P → P/U.

Take HU to be its kernel then since µλ is P -equivariant and P/U is finite,
it follows that HU is in ΩP (L) and that U ⊆ MP (L/HU ). Similarly there are
composed homomorphisms N → P → P/U, L→ N → N/K ′

U and L→ P → P/U
and kernels K ′

U , T
′
U , H

′
U of these morphisms respectively. It is easy to show that

HU = TU = T ′U = H ′
U . These observations readily imply that λ̂, µ̂, λ̂

′, µ̂′, µ̂λ = µ̂′λ′

and the h-map ĥ, defined by

λ̂U (lTU ) = λlUKU , µ̂U (mKU ) = µmUU,

λ̂′U (lTU ) = λ′lUK
′
U , µ̂′U (nK ′

U ) = µnUU,

µ̂λU (lHU ) = (µλ)lUU, µ̂′λ′U (lHU ) = (µ′λ′)lUU,

ĥU (mKU , nK
′
U ) = h(m,n)UHU .

It is clear that µ̂λU = µ̂U λ̂U = µ̂′U λ̂
′
U = µ̂′λ′U . Rest of the proof follows from the

crossed square axioms of (L,M,N, P ) and the descriptions of λ̂, µ̂, λ̂′, µ̂′, µ̂λ = µ̂′λ′,
ĥ and the P̂ -action. �

Corollary 12. If P is in C, and

is a crossed square then

is a crossed square, which is the pro-C completion of (L,M,N, P ).
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