FIXED POINT RESULTS FOR PATA CONTRACTION ON A
METRIC SPACE WITH A GRAPH AND ITS APPLICATION

MARYAM RAMEZANI AND ASMA ARIAN

Abstract

Let (X, d) be a metric space endowed with a graph G such that the set $V(G)$ of vertices of G coincides with X. We define the notion of Pata-G-contraction type maps and obtain some fixed point theorems for such mappings. This extends and subsumes many recent results which were obtained for other contractive type mappings on a partially ordered metric space. As an application, we present theorem on the convergence of successive approximations for some linear operators on a Banach space.

1. Introduction

Let f be a selfmap of a metric space (X, d). Following Petrusel and Rus [14], we say that f is a Picard operator (abbr., PO) if f has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n} x=x^{*}$ for all $x \in X$ and is called a weakly Picard operator (abbr. WPO) if the sequence $\left(f^{n} x\right)_{n \in \mathbb{N}}$ converges, for all $x \in X$ and the limit (which may depends on x) is a fixed point of f. Let (X, d) be a metric space. Let Δ denote the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set $V(G)$ of its vertices coincides with X, and the set $E(G)$ of its edges contains all loops, i.e., $E(G) \supseteq \Delta$. We assume G has no parallel edges, so we can identify G with the pair $(V(G), E(G))$. Moreover, we may treat G as a weighted graph (see [5, 11]) by assigning to each edge the distance between its vertices. By G^{-1} we denote the conversion of a graph G, i.e., the graph obtained from G by reversing the direction of edges. Thus we have

$$
E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}
$$

The letter \tilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a directed graph

[^0]for which the set of its edges is symmetric. Under this convention,
\[

$$
\begin{equation*}
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right) \tag{1}
\end{equation*}
$$

\]

We call $\left(V^{\prime}, E^{\prime}\right)$ a subgraph of G if $V^{\prime} \subseteq V(G), E^{\prime} \subseteq E(G)$ and for any edge $(x, y) \in E^{\prime}, x, y \in V^{\prime}$. Now we recall a few basic notions concerning the connectivity of graph. All of them can be found, e.g., in [5]. If x and y are vertices in a graph G, then a path in G from x to y of length $\mathrm{N}(N \in \mathbb{N} \cup\{\nvdash\})$ is a sequence $\left(x_{i}\right)_{i=0}^{N}$ of $N+1$ vertices such that

$$
x_{0}=x, x_{N}=y \text { and }\left(x_{i-1}, x_{i}\right) \in E(G) \text { for } i=1, \ldots, N
$$

A graph G is connected if there is a path between any two vertices. G is weakly connected if \tilde{G} is connected. If G is such that $E(G)$ is symmetric and x is symmetric and x is a vertex in G, then the subgraph G_{x} consisting of all edges and vertices which are contained in some path beginning at x is called the component of G containing x. In this case $V\left(G_{x}\right)=[x]_{G}$, where $[x]_{G}$ is the equivalence class of the following relation R defined on $V(G)$ by the rule:

$$
y R z \text { if there is a path in } G \text { from } y \text { to } z .
$$

Clearly, G_{x} is connected.
Definition 1. [2] We say that a mapping $f: X \rightarrow X$ is a Banach G-contraction or simply a G-contraction if f preserves edges of G, i.e.,

$$
\forall x, y \in X \quad((x, y) \in E(G) \text { implies }(f x, f y) \in E(G))
$$

and f decreases weights of edges of G in the following way:

$$
\exists \alpha \in(0,1), \forall x, y \in X \quad((x, y) \in E(G) \text { implies } d(f x, f y) \leq \alpha d(x, y))
$$

For more details, we refer the reader to the papers [1, 3, 12].

2. Iterations and fixed points of Pata- G-Contractions

Throughout this section we assume that (X, d) is a metric space, and G is a directed graph such that $V(G)=X$ and $E(G) \supseteq \Delta$. The set of all fixed point of a mapping f is denoted by Fixf.
Recently Pata in [13] introduced a fixed point theorem with weaker hypotheses than those of the Banach contraction principle with an explicit estimate of the convergence rate. This idea was developed by [11, 9, 7, 6, 4,

The aim of this paper is to introduce Pata- G-contractions and obtain results on the existence of a fixed point for single-valued mappings in metric spaces (X, d) by following the technique of Pata [13].

Selecting an arbitrary $x_{0} \in X$ we denote

$$
\|x\|=d\left(x, x_{0}\right) \text { for all } x \in X
$$

Let $\psi:[0,1] \rightarrow[0, \infty)$ is an increasing function vanishing with continuity at zero. Also consider the vanishing sequence depending on $\alpha \geq 1, w_{n}(\alpha)=\left(\frac{\alpha}{n}\right)^{\alpha} \sum_{k=1}^{n} \psi\left(\frac{\alpha}{k}\right)$.
Definition 2. We say that a mapping $f: X \rightarrow X$ is a Pata- G-contraction if f preserves edges of G, i.e.,

$$
\begin{equation*}
\forall x, y \in X((x, y) \in E(G) \text { implies }(f x, f y) \in E(G)) \tag{2}
\end{equation*}
$$

and f decreases weights of edges of G in the following way:

$$
\begin{equation*}
d(f x, f y) \leq(1-\epsilon) d(x, y)+\Lambda \epsilon^{\alpha} \psi(\epsilon)[1+\|x\|+\|y\|]^{\beta} . \tag{3}
\end{equation*}
$$

That inequality is satisfied for every $\epsilon \in[0,1]$ and every $x, y \in X$. also let $\Lambda \geq 0$, $\alpha \geq 1$ and $\beta \in[0, \alpha]$ be fixed constants.

Example 3. Any constant function $f: X \rightarrow X$ is a Pata-G-contraction since $E(G)$ contains all loops. (In fact, $E(G)$ must contain all loops if we wish any constant function to be Pata-G-contraction.)

Example 4. Let \preceq be a partial order in X. Define the graph G_{1} by

$$
E\left(G_{1}\right):=\{(x, y) \in X \times X: x \preceq y\}
$$

Example 5. Let $X=\{0,1,2,3\}$ and the Euclidean metric $d(x, y)=|x-y|, \forall x, y \in$ X. The mapping $f: X \rightarrow X, f x=0$, for $x \in\{0,1\}$ and $f x=1$, for $x \in\{2,3\}$ is a Pata-G-contraction where $G=\{(0,1) ;(0,2) ;(2,3) ;(0,0) ;(1,1) ;(2,2) ;(3,3)\}$.
Proposition 6. If a mapping $f: X \rightarrow X$ is such that (2) (resp., (3)) holds, then (2) (resp. (3)) is also satisfied for graphs G^{-1} and \tilde{G}. Hence, if f is a Pata-Gcontraction, then f is both a Pata- G^{-1}-contraction and a Pata- \tilde{G}-contraction.

Proof. This is an obvious consequence of symmetry of d and (1).
Example 7. Let \preceq be a partial order in X. Set

$$
E\left(G_{2}\right):=\{(x, y) \in X \times X: x \preceq y \text { or } y \preceq x\} .
$$

In particular, for this graph (1.2) holds if f is monotone with respect to the order. Moreover, if f satisfies (3) with $G:=G_{1}$ from Example 4, then by proposition 6, (3) holds with $G:=G_{2}$ since $G_{2}=\tilde{G}_{1}$.

Our first result shows that the convergence of successive approximations for Pata G-contractions is closely related to the connectivity of a graph. Also, we say sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ elements of X, are Cauchy equivalent if each of them is a Cauchy sequence and $d\left(x_{n}, y_{n}\right) \rightarrow 0$.
Lemma 8. Let $f: X \rightarrow X$ be a Pata-G-contraction. Then given $x \in X$ and $y \in[x]_{\tilde{G}}$, there exist constants $N(x, y) \in \mathbb{N}$ and $C(x, y) \in \mathbb{R}$ that $N(x, y)$ is number edges that there is from x to y, such that

$$
d\left(f^{n} x, f^{n} y\right) \leq N(x, y) C(x, y) w_{n}(\alpha)
$$

Proof. Step1: Let $x \in X$ and $y \in[x]_{\tilde{G}}$. Then there is a path $\left(z_{i}^{0}\right)_{i=0}^{N(x, y)}$ in \tilde{G} from x to y, i.e., $z_{0}^{0}=x, z_{N(x, y)}^{0}=y$. we introduce the sequences

$$
z_{i}^{n}=f^{n} z_{i}^{0} \text { and } c_{i}^{n}=\left\|f^{n} z_{i}^{0}\right\|=\left(f^{n} z_{i}^{0}, z_{i}^{0}\right) \text { for all } i=1, \ldots, N(x, y)
$$

For all $i \in\{1,2, \ldots, N(x, y)\}$, the sequence $\left\|f^{n} z_{i}^{0}\right\|=c_{i}^{n}$ is bounded.
Starting from x, Exploiting the inequalities

$$
d\left(f^{n+1} z_{i}^{0}, f^{n} z_{i}^{0}\right) \leq(1-\epsilon) d\left(f^{n} z_{i}^{0}, f^{n-1} z_{i}^{0}\right)+\Lambda \epsilon^{\alpha} \psi(\epsilon)\left[1+\left\|f^{n} z_{i}^{0}\right\|+\left\|f^{n-1} z_{i}^{0}\right\|\right]^{\beta}
$$

Since (2) is true for all $\epsilon \in[0,1]$, we put $\epsilon=0$. Then we have the following relations

$$
d\left(f^{n+1} z_{i}^{0}, f^{n} z_{i}^{0}\right) \leq d\left(f^{n} z_{i}^{0}, f^{n-1} z_{i}^{0}\right) \leq \ldots \leq d\left(f z_{i}^{0}, z_{i}^{0}\right)=c_{i}^{1}
$$

By triangle inequality, we have

$$
\begin{gathered}
d\left(f^{n} z_{i}^{0}, z_{i}^{0}\right) \leq d\left(f^{n} z_{i}^{0}, z_{i}^{1}\right)+d\left(z_{i}^{1}, z_{i}^{0}\right) \\
d\left(f^{n} z_{i}^{0}, z_{i}^{1}\right) \leq d\left(f^{n} z_{i}^{0}, f^{n+1} z_{i}^{0}\right)+d\left(f^{n+1} z_{i}^{0}, z_{i}^{1}\right)
\end{gathered}
$$

We deduce the bound

$$
c_{i}^{n}=d\left(f^{n} z_{i}^{0}, z_{i}^{0}\right) \leq d\left(f^{n+1} z_{i}^{0}, z_{i}^{1}\right)+2 c_{i}^{1} \text { for } i=1, \ldots, N(x, y),
$$

therefore, as $\beta \leq \alpha$, we infer from (2) that

$$
\begin{aligned}
c_{i}^{n} & \leq(1-\epsilon) c_{i}^{n}+\Lambda \epsilon^{\alpha} \psi(\epsilon)\left[1+c_{i}^{n}+c_{i}^{0}\right]^{\beta}+2 c_{i}^{1} \\
& \leq(1-\epsilon) c_{i}^{n}+a \epsilon^{\alpha} \psi(\epsilon)\left(c_{i}^{n}\right)^{\alpha}+b,
\end{aligned}
$$

for some $a, b>0$. Accordingly,

$$
\epsilon c_{i}^{n} \leq a \epsilon^{\alpha} \psi(\epsilon)\left(c_{i}^{n}\right)^{\alpha}+b
$$

If there is a subsequence $c_{i}^{n_{\iota}} \rightarrow \infty$, the choice $\epsilon=\epsilon_{\iota}=\frac{(1+b)}{c_{i}^{n_{\iota}}}$ leads to the contradiction

$$
1 \leq a(1+b)^{\alpha} \psi\left(\epsilon_{\iota}\right) \rightarrow 0
$$

Step2: put $C(x, y)=\sup _{n \in \mathbb{N}} \Lambda\left[1+\left\|c_{1}^{n}\right\|+\left\|c_{2}^{n}\right\|+\ldots+\left\|c_{N(x, y)}^{n}\right\|\right]^{\beta}<\infty$. We prove following

$$
d\left(f^{n} x, f^{n} y\right) \leq N(x, y) C(x, y) w_{n}(\alpha) \text { for all } n \in \mathbb{N}
$$

By induction on n, we show the sequence $p_{n}^{i}=n^{\alpha} d\left(f^{n} z_{i}^{0}, f^{n} z_{i-1}^{0}\right) \leq C(x, y) \alpha^{\alpha} \sum_{k=1}^{n} \psi\left(\frac{\alpha}{k}\right)$ where $i \in\{1,2, \ldots, N(x, y)\}$. for $n=1$,

$$
p_{1}^{i}=d\left(f z_{i}^{0}, f z_{i-1}^{0}\right) \leq(1-\epsilon) d\left(z_{i-1}^{0}, z_{i}^{0}\right)+\Lambda \epsilon^{\alpha} \psi(\epsilon)\left[1+\left\|z_{i-1}^{0}\right\|+\left\|z_{i}^{0}\right\|\right]^{\beta}
$$

for all $\epsilon \in[0,1]$. By putting $\epsilon=1$, we have

$$
p_{1}^{i} \leq \Lambda \epsilon^{\alpha} \psi(\epsilon)\left[1+\left\|z_{i-1}^{0}\right\|+\left\|z_{i}^{0}\right\|\right]^{\beta}
$$

which implies

$$
p_{1}^{i} \leq C(x, y) \alpha^{\alpha} \psi(\alpha)
$$

So, we have

$$
p_{n}^{i}=n^{\alpha} d\left(f^{n} z_{i}^{0}, f^{n} z_{i-1}^{0}\right) \leq n^{\alpha}(1-\epsilon) d\left(f^{n-1} z_{i}^{0}, f^{n-1} z_{i-1}^{0}\right)+C(x, y) \epsilon^{\alpha} \psi(\epsilon)
$$

choosing at each n

$$
\begin{gathered}
\epsilon=1-\left(\frac{n}{n+1}\right)^{\alpha} \leq \frac{\alpha}{n+1} \\
p_{n}^{i} \leq(n-1)^{\alpha} d\left(f^{n-1} z_{i}^{0}, f^{n-1} z_{i-1}^{0}\right)+C(x, y) \alpha^{\alpha} \psi\left(\frac{\alpha}{n}\right),
\end{gathered}
$$

we end up with

$$
p_{n+1}^{i} \leq p_{n}^{i}+C(x, y) \alpha^{\alpha} \psi\left(\frac{\alpha}{n+1}\right)
$$

Since $p_{0}^{i}=0$, this gives

$$
p_{n}^{i} \leq C(x, y) \alpha^{\alpha} \sum_{k=1}^{n} \psi\left(\frac{\alpha}{k}\right)
$$

and a final division by n^{α} will do. Now, since $i \in\{1,2, \ldots, N(x, y)\}$, by triangle inequality, we have

$$
d\left(f^{n} x, f^{n} y\right) \leq N(x, y) C(x, y) w_{n}(\alpha)
$$

Theorem 9. Let (X, d) be a metric space endowed with a graph G and $f: X \rightarrow X$ be a Pata-G-contraction such that the graph G is weakly connected. For all $x, y \in X$, the sequences $\left(f^{n} x\right)_{n \in \mathbb{N}}$ and $\left(f^{n} y\right)_{n \in \mathbb{N}}$ are Cauchy equivalent.

Proof. Let f be a Pata- G-contraction, m be fixed and $x, y \in X$. By hypothesis $[x]_{\tilde{G}}=X$, so $f^{m} x=x_{m} \in[x]_{\tilde{G}}$. By Lemma 8 , we get

$$
d\left(x_{n}, x_{n+m}\right)=d\left(f^{n} x, f_{m}^{n} x\right) \leq N\left(x, x_{m}\right) C\left(x, x_{m}\right) w_{n}(\alpha)
$$

as $n \rightarrow \infty, d\left(f^{n} x, f^{n} x_{m}\right) \rightarrow 0$. This show that sequence $\left(f^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. So since $y \in[x]_{\tilde{G}}$, Lemma 8 yields

$$
d\left(f^{n} x, f^{n} y\right) \leq N(x, y) C(x, y) w_{n}(\alpha)
$$

As $n \rightarrow \infty, d\left(f^{n} x, f^{n} y\right) \rightarrow 0$. Thus sequence $\left(f^{n} y\right)_{n \in \mathbb{N}}$ is Cauchy and $\left(f^{n} x\right)_{n \in \mathbb{N}}$, $\left(f^{n} y\right)_{n \in \mathbb{N}}$ are Cauchy equivalent.

Corollary 10. Let (X, d) be complete. The following statement are equivalent:
(i) G is weakly connected;
(ii) for any Pata-G-contraction $f: X \rightarrow X$, there is $x_{*} \in X$ such that $\lim _{n \rightarrow \infty} f^{n} x=$ x_{*} for all $x \in X$.
Proposition 11. Assume that $f: X \rightarrow X$ is a Pata- G-contraction such that for some $x_{0} \in X, f x_{0} \in\left[x_{0}\right]_{\tilde{G}}$. Let $\tilde{G_{x_{0}}}$ be the component of \tilde{G} containing x_{0}. Then $\left[x_{0}\right]_{\tilde{G}}$ is f-invariant and $\left.f\right|_{\left[x_{0}\right]_{\tilde{G}}}$ is a Pata- $\tilde{G}_{x_{0}}$-contraction. Moreover, if $x, y \in\left[x_{0}\right]_{\tilde{G}}$ then $\left(f^{n} x\right)_{n \in \mathbb{N}}$ and $\left(f^{n} y\right)_{n \in \mathbb{N}}$ are Cauchy equivalent.

Proof. Let $x \in\left[x_{0}\right]_{\tilde{G}}$. Then there is a path $\left(x_{i}\right)_{i=0}^{N}$ in \tilde{G} from x_{0} to x, i.e., $x_{N}=x$ and $\left(x_{i-1}, x_{i}\right) \in E(\tilde{G})$ for $i=1, \ldots, N$. By Proposition $6 f$ is a Pata- \tilde{G} contraction which yields $\left(f x_{i-1}, f x_{i}\right) \in E(\tilde{G})$ for $i=1, \ldots, N$, i.e., $\left(f x_{i}\right)_{i=0}^{N}$ is a path in \tilde{G} from $f x_{0}$ to $f x$. Thus $f x \in\left[f x_{0}\right]_{\tilde{G}}$. Since, by hypothesis, $f x_{0} \in\left[x_{0}\right]_{\tilde{G}}$, i.e., $\left[f x_{0}\right]_{\tilde{G}}=\left[x_{0}\right]_{\tilde{G}}$, we infer $f x \in\left[x_{0}\right]_{\tilde{G}}$. Thus $\left[x_{0}\right]_{\tilde{G}}$ is f-invariant.

Now let $(x, y) \in E\left(\tilde{G}_{x_{0}}\right)$. This means there is a path $\left(x_{i}\right)_{i=0}^{N}$ in \tilde{G} from x_{0} to y such that $x_{N-1}=x$. Let $\left(y_{i}\right)_{i=0}^{M}$ be a path in \tilde{G} from x_{0} to $f x_{0}$. Repeating the argument from the first part of the proof, we infer $\left(y_{0}, y_{1}, \ldots, y_{M}, f x_{1}, \ldots, f x_{N}\right)$ is a path in \tilde{G} from x_{0} to $f y$; in particular, $\left(f x_{N-1}, f x_{N}\right) \in E\left(\tilde{G}_{x_{0}}\right)$, i.e., $(f x, f y) \in E\left(\tilde{G}_{x_{0}}\right)$. Moreover, since $E\left(\tilde{G}_{x_{0}}\right) \subseteq E(\tilde{G})$ and f is a Pata- \tilde{G}-contraction, we infer (3) holds for the graph $\tilde{G}_{x_{0}}$. Thus $\left.f\right|_{\left[x_{0}\right] \tilde{G}}$ is a Pata- $\tilde{G}_{x_{0}}$-contraction.
Finally, in view of Theorem 9, the second statement follows immediately from the first one since $\tilde{G}_{x_{0}}$ is connected.
Theorem 12. Let (X, d) be a complete metric space endowed with a graph G and $f: X \rightarrow X$ be a Pata-G-contraction. Let $X_{f}:=\{x \in X:(x, f x) \in E(G)\}$. We have the following property:

$$
\begin{equation*}
\text { for any }\left(x_{n}\right)_{n \in \mathbb{N}} \text { in } X \text {, if } x_{n} \rightarrow x \text { and }\left(x_{n}, x_{n+1}\right) \in E(G) \text { for } n \in \mathbb{N} \text {, } \tag{4}
\end{equation*}
$$

Then there is a subsequence $\left(x_{k_{n}}\right)_{n \in \mathbb{N}}$ with $\left(x_{k_{n}}, x\right) \in E(G)$ for $n \in \mathbb{N}$.
Then the following statements hold.
$1^{o} \operatorname{cardFixf}=\operatorname{card}\left\{[x]_{\tilde{G}}: x \in X_{f}\right\}$.
2^{o} For any $x \in X_{f},\left.f\right|_{[x]_{\tilde{G}}}$ is a $P O$.
3^{o} If $X^{\prime}:=\cup\left\{[x]_{\tilde{G}}: x \in X_{f}\right\}$, then $\left.f\right|_{X^{\prime}}$ is a WPO.
4^{o} If $f \subseteq E(G)$, then f is a WPO.
Proof. We begin with point 2^{0}. Let $x \in X_{f}$, then $f x \in[x]_{\tilde{G}}$, so by Proposition 11 if $y \in[x]_{\tilde{G}}$, then $\left(f^{n} x\right)_{n \in \mathbb{N}}$ and $\left(f^{n} y\right)_{n \in \mathbb{N}}$ are Cauchy equivalent. By completeness, $\left(f^{n} x\right)_{n \in \mathbb{N}}$ converges to some $x_{*} \in X$. Clearly, also $\lim _{n \rightarrow \infty} f^{n} y=x_{*}$. Since $(x, f x) \in E(G),(2)$ yields

$$
\begin{equation*}
\left(f^{n} x, f^{n+1} x\right) \in E(G) \text { for } n \in \mathbb{N} \tag{5}
\end{equation*}
$$

By (4), there is a subsequence $\left(f^{k_{n}} x\right)_{n \in \mathbb{N}}$ such that $\left(f^{k_{n}} x, x_{*}\right) \in E(G)$ for $n \in \mathbb{N}$. Hence and by (5), we infer $\left(x, f x, f^{2} x, \ldots, f^{k_{1}} x, x_{*}\right)$ is a path in G (hence also in
$\tilde{G})$ from x to x_{*}, i.e., $x_{*} \in[x]_{\tilde{G}}$. Moreover, by (3), we have

$$
d\left(f^{k_{n+1}} x, f x_{*}\right) \leq(1-\epsilon) d\left(f^{k_{n}} x, x_{*}\right)+C \epsilon^{\alpha} \psi(\epsilon) \text { for } n \in \mathbb{N}
$$

holds for all $\epsilon \in[0,1]$, put $\epsilon=0$, so

$$
d\left(f^{k_{n+1}} x, f x_{*}\right) \leq d\left(f^{k_{n}} x, x_{*}\right)
$$

Hence, letting n tend to ∞ we conclude $x_{*}=f x_{*}$. Thus $\left.f\right|_{[x]_{\tilde{G}}}$ is a $P O$.
Now 3° is an easy consequence of 2°. To show 4^{o} observe that $f \subseteq E(G)$ means $X_{f}=X$. This yields $X^{\prime}=X$, so f is a WPO in view of 3°.
To prove 1^{o}, consider a mapping π define by

$$
\pi(x):=[x]_{\tilde{G}} \text { for all } x \in \text { Fix } f .
$$

It suffices to show π is a bijection of Fixf onto $C:=\left\{[x]_{\tilde{G}}: x \in X_{f}\right\}$. since $E(G) \supseteq \Delta$, we infer Fixf $\subseteq X_{f}$ which yields $\pi(F i x f) \subseteq C$. On the other hand, if $x \in X_{f}$, then by $2^{o}, \lim _{n \rightarrow \infty} f^{n} x \in[x]_{\tilde{G}} \cap$ Fixf which implies $\pi\left(\lim _{n \rightarrow \infty} f^{n} x\right)=$ $[x]_{\tilde{G}}$. Thus f is a surjection of Fixf onto C. Now, if $x_{1}, x_{2} \in F i x f$ are such that $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)$, i.e., $\left[x_{1}\right]_{\tilde{G}}=\left[x_{2}\right]_{\tilde{G}}$, then $x_{2} \in\left[x_{1}\right]_{\tilde{G}}$, so by 2^{0},

$$
\lim _{n \rightarrow \infty} f^{n} x_{2} \in\left[x_{1}\right]_{\tilde{G}} \cap F i x f=\left\{x_{1}\right\}
$$

i.e., $x_{1}=x_{2}$ since $f^{n} x_{2}=x_{1}$. Consequently, f is injective. Thus 1^{o} is proved.

Remark 13. If we assume that a graph G is such that $E(G)$ is a quasi-order (i.e., it is transitive), then 4) is equivalent to the following:

$$
\begin{align*}
& \text { for any }\left(x_{n}\right)_{n \in \mathbb{N}} \text { in } X, \text { if } x_{n} \rightarrow x \text { and }\left(x_{n}, x_{n+1}\right) \in E(G) \text { for } n \in \mathbb{N} \text {, } \\
& \text { Then }\left(x_{n}, x\right) \in E(G) \text { for } n \in \mathbb{N} . \tag{6}
\end{align*}
$$

Proposition 14. If $E(G)$ is a quasi-order and given $x \in X$, the set $\{y \in X$: $(x, y) \in E(G)\}$ is closed, then (X, d, G) has property (6).

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in \mathbb{N}$ and $x_{n} \rightarrow x$. By transitivity, given $n \in \mathbb{N}$,

$$
x_{m} \in\left\{y \in X:\left(x_{n}, y\right) \in E(G)\right\} \text { for } m \geq n
$$

Letting m tend to ∞, in view of the hypothesis we get $\left(x_{n}, x\right) \in E(G)$.

3. Application: A generalization of the Kelisky-Rivlin theorem

In 1967, Kelisky and Rivlin defined the Bernstein operator $B_{n}(n \in \mathbb{N})$ on the space $C[0,1]$ by

$$
\left(B_{n} \varphi\right)(t):=\sum_{k=0}^{n} \varphi\left(\frac{k}{n}\right)\binom{n}{k} t^{k}(1-t)^{n-k}
$$

for all $\varphi \in C[0,1], t \in[0,1]$ (see [5]). They proved that each Bernstein operator B_{n} is a WPO. Moreover,

$$
\lim _{j \rightarrow \infty}\left(B_{n}^{j} \varphi\right)(t)=\varphi(0)+(\varphi(1)-\varphi(0)) t
$$

for all $\varphi \in C[0,1], t \in[0,1]$ and $n \geq 1$, where $\left\{B_{n}^{j}\right\}_{j \geq 1}$ is the sequence of the iterates of B_{n}. In 2008, a simple proof of the Kelisky-Rivlin theorem was given by Rus with the help of some trick with the Contraction Principle (see[6]). For more details about Kelisky-Rivlin theorem, we refer the reader to the paper [11.

Our purpose here is to show that the Bernstein operator B_{n} is a Pata- G contraction for some graph G such that $B_{n} \subseteq E(G)$, and hence, in view of theorem $12 . B_{n}$ is a WPO.

Theorem 15. Let X be a Banach space and X_{0} a closed subspace of X. Let T : $X \rightarrow X$ be a linear operator (not necessarily continuous on X) such that $\left\|\left.T\right|_{X_{0}}\right\|<1$. If the corresponding field $I-T$ is such that $(I-T)(X) \subseteq X_{0}$, then T is a WPO. Moreover, CardFixT $=\operatorname{Card} X \backslash X_{0}$. and

$$
\left(x+X_{0}\right) \cap F i x T=\left\{\lim _{n \rightarrow \infty} T^{n} x\right\} \text { for } x \in X
$$

Proof. Define the following graph $G: V(G):=X$ and for $x, y \in X$,

$$
(x, y) \in E(G) \text { if } x-y \in X_{0}
$$

Clearly, $E(G)$ is an equivalence relation; in particular, $E(G) \supseteq \Delta$ and by symmetry, $\tilde{G}=G$. We show Theorem 12 as an application here. First we prove T is a Pata-G-contraction. Let $x, y \in E(G)$, i.e., $x-y \in X_{0}$. Then we have

$$
T x-T y=(y-T y)-(x-T x)+(x-y) \in X_{0}
$$

since, by hypothesis, $y-T y, x-T x \in X_{0}$. Thus $(T x, T y) \in E(G)$ and moreover,

$$
\|T x-T y\|=\|T(x-y)\| \leq\left\|\left.T\right|_{X_{0}}\right\|\|x-y\|
$$

Since $\left\|\left.T\right|_{X_{0}}\right\|<1$, we infer T is a G-contraction.
By using [section 3 of [13]], we have

$$
\|T x-T y\| \leq(1-\epsilon)\|x-y\|+\Lambda \epsilon^{1+\gamma}[1+\|x\|+\|y\|], \quad \forall \gamma>0
$$

where $\alpha=\beta=1, \psi(\epsilon)=\epsilon^{\gamma}$ and

$$
\Lambda=\Lambda(\gamma, \lambda)=\frac{\gamma^{\gamma}}{(1+\gamma)^{1+\gamma}} \frac{1}{(1-\lambda)^{\gamma}}
$$

So, we infer T is a Pata- G-contraction.
Observe that given $x \in X$,

$$
\{y \in X:(x, y) \in E(G)\}=x+X_{0}
$$

Since X_{0} is closed, so is $x+X_{0}$. Thus Proposition 14 implies (X, d, G) has property (6) since, in particular, $E(G)$ is a quasi-order. Now condition $(I-T)(X) \subseteq X_{0}$
means $(x, T x) \in E(G)$ for $x \in X$, i.e., $T \subseteq E(G)$. So Theorem 12 imply T is a WPO. Moreover, since $E(\tilde{G})(=E(G))$ is transitive, we infer that given $x \in X$,

$$
[x]_{\tilde{G}}=\{y \in X:(x, y) \in E(G)\}=x+X_{0}
$$

Hence and by Theorem $12\left(1^{\circ}\right)$,

$$
\operatorname{cardFixT}=\operatorname{card}\left\{x+X_{0}: x \in X_{T}\right\}=\operatorname{card} X \backslash X_{0},
$$

since $X_{T}=X$. Finally, Theorem $12\left(2^{o}\right)$ yields the last statement of the thesis.

References

[1] Abbas, M., Nazir, T., Popović, B.Z., Radenović, S., On weakly commuting set valued mappings on a domain of sets endowed with directed graph, to appear in Results in Mathematics, Doi: $10.1007 / \mathrm{s} 00025-016-0588-\mathrm{x}$.
[2] Aleomraninejad, S.M.A., Rezapour, S., Shahzad, N., Some fixed point results on a metric space with a graph, Topology and its Application, 159 (2011), 659-663.
[3] Choudhury, B.S., Kadelburg, Z., Metiya, N., Radenović, N., Survey of fixed point theorems under Pata-type contraction, too appear in Bull. of Malaysian Math. Soc. 2019.
[4] Jacob , G.K., Khan, M.S., Park, C., Yun, S., On Generalized Pata Type Contractions, Mathematics, 6, 25, (2018), 1-8.
[5] Johnsonbaugh, I.R., Discrete Mathematics, Prentice-Hall, Inc. New Jersey, 1997.
[6] Kadelburg, Z., Radenović, S., Fixed point theorems under Pata-type conditions in metric spaces, J. Egypt. Math. Soc., 24, (2016), 77â€"82.
[7] Kadelburg, Z., Radenović, S., Pata-type common fixed point results in b-metric and brectangular metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 944-954.
[8] Kadelburg, Z., Radenović, S., A note on Pata-type cyclic contractions, Sarajevo Journal of Mathematics, 11 (24), No.2, (2015), 1-11.
[9] Kadelburg, Z., Radenović, S., Fixed point and tripled fixed point theorems under Pata-type contractions in ordered metric spaces, International Journal of Analysis and Applications, 6, No. 1 (2014), 113-122.
[10] Kelisky, R.P., Rivlin, T.J., Iterates of Bernstein polynomials, Pacific J. Math., 21 (1967), 511-520.
[11] Lukawska, G.G., Jachymski, J., IFS on a metric space with a graph structure and extension of the Kelisky-Rivlin theorem, J. Math. Anal. and Appl., 356(2), (2009). DOI: 10.1016/j.jmaa.2009.03.023.
[12] Nazir, T., Abbas, M., Lampert, T. A., Radenović, S., Common fixed points of set-valued Fcontraction mappings on domain of sets endowed with directed graph, Comp. Appl. Math., DOI 10.1007/s40314-016-0314-z.
[13] Pata, V., A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), 299-305.
[14] Petrusel, A., Rus, I.A., Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134 (2006), 411-418.
[15] Rus, I.A., Iterates of Bernstein polynomials, via contraction principle, J. Math. Anal. Appl., 292 (2004), 259-261.

Current address: Maryam Ramezani: (corresponding author), Department of Mathematics, University of Bojnord, Bojnord, Iran.

E-mail address: mar.ram.math@gmail.com, m.ramezani@ub.ac.ir
ORCID Address: http://orcid.org/0000-0002-5593-1924
Current address: Asma Arian: Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Semnan, Iran.

E-mail address: arian1722@gmail.com
ORCID Address: http://orcid.org/0000-0002-4068-203X

[^0]: Received by the editors: October 05, 2018; Accepted: March 26, 2019 .
 2010 Mathematics Subject Classification. Primary 47H10, 54H25; Secondary 05C76.
 Key words and phrases. Fixed point, Weakly connected graph, Pata-G-contraction, Directed graph.

