
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 2, Pages 1596—1610 (2019)
DOI: 10.31801/cfsuasmas.416238
ISSN 1303—5991 E-ISSN 2618-6470

Available online: 9th August 2019

http://communications.science.ankara.edu.tr/index.php?series=A1

TEXTURE SPACES WITH IDEAL

MEMET KULE AND ŞENOL DOST

Abstract. In this paper, the authors define the notion of ideal on texture
spaces. The concept of di-local function is also introduced here by utilizing
the families of neighborhood structure for a ditopological texture space. These
concepts are discussed with a view to finding new ditopological texture spaces
from the original one. Finally, we introduce and give some properties of weakly
bicontinuous difunction, a subclass of bicontinuous difunction.

1. Introduction

In general topological spaces, by introducing the notion of ideals was carried
out in the classical text by Kuratowski [16] and also in [21]. There has been the
generalization of some important properties in general topology via topological
ideals in the paper of Jankovic and Hamlett [14], [11], Rancin [19] and Samuels [20].
The properties like decomposition of continuity [2], compactness [13], separation
axioms [12] and connectedness [10] have been generalized using the concept of
topological ideals.
The fundamental concept of a texture space was introduced by Brown and the

primary motivation ditopological texture spaces are to offer a new extension of
classical fuzzy sets. Since then various aspects of general topology were investigated
and carried out in ditopological texture space sense by several authors of this field.
In recent papers on textures show that they are also a useful model for rough set
theory [8], [9] and semi-separation axioms in soft fuzzy topological spaces [15].
Our aim in this paper is the topic of the ditopological texture spaces with ideal

which is discussed from the textural point of view. Also, in the literature there

are many "weakened" forms of continuity, we characterized the weakened form of
continuity on the ditopological texture space with ideal.
The paper is structured as follows: Section 2 introduces the notion of textures

which will be used along this work. In section 3, we define di-ideal on a texture and
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introduce the notion of di-local function. We have deduced some characterization
theorems for the ditopological texture space with ideal. In section 4, a class of
difunction called weakly ideal bicontinuous are introduced and studied.

2. Preliminaries

In this section, we give some basic definitions and results of the theory of dito-
pological texture spaces which is needed in the sequel [3—7].
Texture Space: Let S be a set. Then S ⊆ P(S) is said to be a texturing of S, and
(S, S) is said to be a texture space, or simply a texture, if S is a point-separating,
complete, completely distributive lattice containing S and ∅, such that arbitrary
meets coincide with intersection, and finite joins coincide with unions.
For a texture (S, S), the sets Ps =

⋂
{A ∈ S | s ∈ A} and, as a dually, Qs =

∨
{A ∈

S | s /∈ A} are called the p-sets and the q-sets, respectively. Also, for A ∈ S the
core Ab of A =

∨
{Ai | i ∈ I} is given by

Ab =
⋂{⋃

{Ai | i ∈ I} | {Ai | i ∈ I} ⊆ S
}
.

Complementation: Since a texturing of S need not be closed under the operation
of taking the set-complement, but it may be that there exists a mapping σ : S→ S

verifying the condition σ(σ(A)) = A for all A ∈ S and for all A,B ∈ S, A ⊆ B =⇒
σ(B) ⊆ σ(A). Thus, a texture (S, S) with a complementation σ is said to be a
complemented texture (S, S, σ).

Examples 2.1. Now, we give well-known reference examples [3,5].
(i) The pair (X,P(X)) is called the discrete texture on X where P(X) is the

power set of X. Obviously, for all x ∈ X we have Px = {x}, Qx = X \ {x}.
(ii) For I = [0, 1] define I = {[0, t] | t ∈ [0, 1]} ∪ {[0, t) | t ∈ [0, 1]}, ι([0, t)) =

[0, 1 − t] and ι([0, t]) = [0, 1 − t), t ∈ [0, 1]. (I, I, ι) gives the unit interval
texture, where Qt = [0, t) and Pt = [0, t] for all t ∈ I.

(iii) For textures (S, S), (T,T), we will denote by S ⊗ T the product texturing
of S × T. Thus, S⊗ T consists of arbitrary intersections of sets of the form
(A×T )∪ (S×B), A ∈ S, B ∈ T, and (S×T, S⊗T) is said to be the product
of (S, S) and (T,T). For s ∈ S, t ∈ T we obviously get P(s,t) = Ps × Pt and
Q(s,t) = (Qs × T ) ∪ (S ×Qt).

We begin recalling that a texture (S, S) is said to be plain if S is closed under
arbitrary unions; equivalently if arbitrary joins coincide with unions or if Ps * Qs
for all s ∈ S. For the above examples, (X,P(X)) and (I, I) are plain.

Definition 2.2. A ditopology on a texture space (S, S) is a pair (τ , κ) of subsets
of S, where the set of open sets τ and the set of closed sets κ verifies

(1) S, ∅ ∈ τ , S, ∅ ∈ κ,
(2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ , K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ,
(3) Gi ∈ τ , i ∈ I =⇒

∨
Gi ∈ τ . Ki ∈ κ, i ∈ I =⇒

⋂
Ki ∈ κ.
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Therefore a ditopology is essentially a “topology”for which there is no a priori
relation between the open and closed sets. We refer to τ as the topology and to κ
as the cotopology of (τ , κ). Let (τ1, κ1) and (τ2, κ2) be ditopologies on a texture
(S, S). Then, we say that (τ2, κ2) is finer than (τ1, κ1) if τ1 ⊆ τ2 and κ1 ⊆ κ2.

The closure cl (A) and the interior int (A) of A ∈ S is defined, respectively:

cl (A) =
⋂
{K ∈ κ | A ⊆ K} and int (A) =

∨
{G ∈ τ | G ⊆ A}.

If (τ , κ) is a ditopology on a complemented texture (S, S, σ) we say (τ , κ) is
complemented if κ = σ(τ). In this case we get σ(cl (A)) = int(σ(A)) and
σ(int(A)) = cl(σ(A)).

Examples 2.3. (i) Let (X,T) be a topological space. Then the pair (T,T′) is
a ditopology on the discrete texture (X,P(X)) where T′ = {X \G|G ∈T}.

(ii) For any texture (S, S) a ditopology (τ , κ) with τ = S is said to be discrete,
and one with κ = S is said to be codiscrete.

(iii) For any texture (S, S) a ditopology (τ , κ) with τ = {∅, S} is said to be
indiscrete, and one with κ = {∅, S} is said to be co-indiscrete.

The suitable morphisms between textures have two parts which are dual to
each other. Namely, a direlation on a texture space is a pair (r,R) where r is a
relation and R a corelation are the elements of a textural product verifying certain
conditions [5]. One of the most useful notions of ditopological texture spaces is that
of difunction. A difunction is derived from that of direlation as follows.
Difunction: A difunction from (S, S) to (T,T) is a direlation (f, F ) from (S, S)

to (T,T) verifying the following two conditions.

DF1 For s, s′ ∈ S, Ps * Qs′ =⇒ there exist t ∈ T with f * Q(s,t) and
P (s′,t) * F .

DF2 For t, t′ ∈ T and s ∈ S, f * Q(s,t) and P (s,t′) * F =⇒ Pt′ * Qt.

Definition 2.4. Let (f, F ) : (S, S)→ (T,T) be a difunction. For A ∈ S and B ∈ T,
the A-sections and the B-presections with respect to (f, F ) are given as follows:

f→A =
⋂
{Qt | for all s, f * Q(s,t) =⇒ A ⊆ Qs},

F→A =
∨
{Pt | for all s, P (s,t) * F =⇒ Ps ⊆ A},

and

f←B =
∨
{Ps | for all t, f * Q(s,t) =⇒ Pt ⊆ B},

F←B =
⋂
{Qs | for all t, P (s,t) * F =⇒ B ⊆ Qt},

respectively.

For a given difunction, the inverse image and the inverse co-image are equal; and
the image and co-image are usually not.
We note that ((f←)←)(A) = f→(A) and ((F←)←)(A) = F→(A) by [5, Lemma

2.9].
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Examples 2.5. (1)
(2) The identity difunction (i, I) is given by

i =
∨{

P(s,s) | s ∈ S
}
and I =

⋂{
Q(s,s) | s ∈ Sb

}
.

(3) Let f : X → Y be a point function. Then (f, f ′) is a difunction from
(X,P(X)) to (Y,P(Y )) where f ′ = (X × Y )�f .

Let (τ , κ) be a ditopology on (S, S). We recall [7] that an element N of S is called
a neighborhood of s ∈ Sb if there exists U ∈ τ such that Ps ⊆ U ⊆ N * Qs. The
set of neighborhoods of s is denoted by η (s). Dually, an element M of S is called
a coneighborhood of s ∈ S if there exists K ∈ κ such that Ps *M ⊆ K ⊆ Qs, and
the set of coneighborhoods of s is denoted by µ (s). Furthermore, for all s, the sets
G in τ are characterized by the condition that G ∈ η (s) with G * Qs and the sets
K in κ are characterized by the condition that K ∈ µ (s) with Ps * K.

Definition 2.6. A difilter on a texture (S, S) is F×G , where F and G are nonempty
and subsets of S satisfies

(1) ∅ 6∈ F, S 6∈ G,
(2) F ∈ F, F ⊆ F ′ ∈ S =⇒ F ′ ∈ F, G ∈ G, G′ ⊆ G =⇒ G′ ∈ G,
(3) F1, F2 ∈ F =⇒ F1 ∩ F2 ∈ F. G1, G2 ∈ G =⇒ G1 ∪G2 ∈ G.

3. The notion of ideal in ditopological texture spaces

Firstly we recall that a nonempty collection I of subsets on a nonempty set X
is said to be an ideal if it verifies the following two conditions: (i) B ∈ I and
A ⊆ B =⇒ A ∈ I (heredity); (ii) A ∈ I and B ∈ I =⇒ A ∪B ∈ I (finitely additive)
[16]. Then (X, I) is called a set with ideal. This leads to the following analogous
concepts in a texture space.

Definition 3.1. Let (S, S) be a texture space.
(a) A subset L ⊆ S is called a S-ideal, or an ideal on (S, S) if L 6= ∅ and verifies,

(i) L ∈ L and L ⊇ L′ =⇒ L′ ∈ L,
(ii) L1, L2 ∈ L =⇒ L1 ∪ L2 ∈ L.

(b) A subset G ⊆ S is called a S-co-ideal, or a co-ideal on (S, S) if it verifies,
(i) G ∈ G and G ⊆ G′ =⇒ G′ ∈ G,
(ii) G1, G2 ∈ G =⇒ G1 ∩G2 ∈ G.

(c) A pair (L,G), where L is an ideal and G is a co-ideal on (S, S), is said to
be a di-ideal on (S, S).

Clear from the definition that the empty set ∅ and the set S always belongs to
L and G, respectively.
Now we investigate the effect of a complementation on a di-ideal. For this,

we introduce the notions of an ideal L on the complemented texture (S, S, σ) as
σ (L) = {σ (L) | L ∈ L}. Likewise, σ (G) defined by G.
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Proposition 3.2. Let (S, S, σ) be a complemented texture space and L ⊆ S. Then
L is an ideal if and only if σ (L) is a co-ideal.

Proof. Suppose that L is an ideal on S. Then
(i) G ∈ σ (L) and G ⊆ G′ =⇒ σ (G) ∈ L and σ (G) ⊇ σ (G′). By the ideal of

L, we have σ (G′) ∈ L, thus G′ ∈ σ (L).
(ii) G1, G2 ∈ σ (L) =⇒ σ (G1) , σ (G2) ∈ L and by the ideal of L, we have

σ (G1) ∪ σ (G2) ∈ L. Thus σ (σ (G1) ∪ σ (G2)) ∈ σ (L) implies G1 ∩ G2 ∈
σ (L).

Hence, we see that σ (L) is a co-ideal.
Using dual arguments, it can be obtained the other direction. �

Definition 3.3. Let (S, S, σ) be a complemented texture space and (L,G) be a
di-ideal on (S, S). In this case,

(i) The pair (σ (G) , σ (L)) is called the conjugate of (L,G).
(ii) If (L,G) = (σ (G) , σ (L)), then (L,G) is called a complemented di-ideal on

(S, S, σ).

Remark 3.4. Let I be an ideal on a set X. Then it is easy to see that the pair
(I, Ic) is a di-ideal on the discrete texture (X,P(X)) where Ic = {X \A|A ∈ I}.

Let (S, S, σ) be a complemented texture space with a di-ideal (L,G). If S /∈ L
and ∅ /∈ G, then F = {σ (L) : L ∈ L} is a filter and E = {σ (G) : G ∈ G} is a cofilter.
Conditions (1) and (3) of Definition 2.6 are clear. Let us check condition (2). For
L ∈ L, consider σ (L) ∈ F and σ (L) ⊆ σ (L′) ∈ S =⇒ L′ ⊆ L and L′ ∈ L, thus we
have σ (L′) ∈ F. Also, we have to check the following cases:

σ (G) ∈ E and σ (G) ⊇ σ (G′) ∈ S =⇒ G ⊆ G′ and G′ ∈ G
for G ∈ G, thus we have σ (G′) ∈ E.
Furthermore, let (S, S, τ , κ) be a ditopological texture space. It can easy to

satisfy that µ (s) is a S-ideal, but in general η (s) need not be a S-co-ideal where η (s)
(resp. µ (s)) is the set of neighborhoods (resp. coneighborhoods) of s. The reason
is that if N2 * Qs and N1 * Qs it is not necessarily the case that N1 ∩ N2 * Qs
and thus η (s) need not verify Definition 3.1 (b)(ii). On the other hand, if choose
(S, S) as a plain then N1 ∩N2 * Qs is equivalent to Ps ⊆ N1 ∩N2, which obviously
holds whenever N2 * Qs and N1 * Qs, because then Ps ⊆ N2 and Ps ⊆ N1. Hence
for ditopology (τ , κ) on a plain texture (S, S) the product µ (s)×η (s) is a S-di-ideal
for all s ∈ Sb = S.

Definition 3.5. Let (S, S, τ , κ) be a ditopological texture space and (L,G) be a
di-ideal on (S, S) and A ∈ S. Then

(i)

A∗ (L) =
∨
{Ps | ∀Ps * Qr, ∀N ∈ η (r) with A ∩N /∈ L}

is called the local function of A.
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(ii)

A∗ (G) =
⋂
{Qs | ∀Pr * Qs, ∀M ∈ µ (r) with A ∪M ∈ G}

is called the co-local function of A.
(iii) A pair (A∗ (L) , A∗ (G)) where A∗ (L) is local function of A and A∗ (G) is a

co-local function of A, is said to be di-local function of A.

When no ambiguity is present we simply write A∗ (resp. A∗) instead of A∗ (L)
(resp. A∗ (G)).

Example 3.6. Let (X, τ) be a topological space. Consider the discrete texture
space (X,P(X)). Obviously, the pairs ({∅} ,P(X)� {∅}) and (P(X), {∅}) are di-
ideals on (X,P(X)). That is, L = {∅} iff A∗ = cl (A) and G =P(X)� {∅} iff A∗ =
int (A), for any set A ∈ P(X). Likewise, L =P(X) iff A∗ = {∅} and G = {∅} iff
A∗ = S, for any set A ∈ P(X).

The following theorem contains basic results and useful facts concerning the local
function.

Theorem 3.7. Let (S, S, τ , κ) be a ditopological texture space and A,B ∈ S. Then
(1) Let L and J be two ideals on (S, S). Then the following are satisfied:

(i) A ⊆ B =⇒ A∗ ⊆ B∗.
(ii) L ⊆ J =⇒ A∗ (J) ⊆ A∗ (L).
(iii) A∗ = cl (A∗) ⊆ cl (A) (A∗ is a closed subset of cl (A)).
(iv) (A∗)∗ ⊆ A∗.
(v) (A ∪B)∗ = A∗ ∪B∗.
(vi) I ∈ L =⇒ (A ∪ I)∗ = A∗.

(2) Let G and F be two co-ideals on (S, S). Then the following are satisfied:
(i) A ⊆ B =⇒ A∗ ⊆ B∗.
(ii) F ⊆ G =⇒ A∗ (G) ⊆ A∗ (F).
(iii) int (A) ⊆ int (A∗) = A∗ (int (A) is an open subset of A∗).
(iv) A∗ ⊆ (A∗)∗.
(v) (A ∩B)∗ = A∗ ∩B∗.
(vi) G ∈ G =⇒ (A ∩G)∗ = A∗.

Proof. The proof of (2) is dual to the proof of (1) and is left to the interested reader.

(i) Let A ⊆ B. Suppose that A∗ * B∗. Then, there exists some s ∈ S such
that A∗ * Qs and Ps * B∗. Thus A∗ * Qs implies Ps′ * Qs for ∃s′ ∈ S
and by definition of A∗, we have:

∀Ps′ * Qm, ∀N ∈ η (m) with A ∩N /∈ L. (3.1)

Now, let Ps * Qr and N ∈ η (r). Then Ps′ * Qr. By (3.1) we have
A ∩ N /∈ L. Since A ∩ N ⊆ B ∩ N , we have B ∩ N /∈ L. So we have
Ps ⊆ B∗. This is a contradiction.
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(ii) Assume that L ⊆ J and A∗ (J) * A∗ (L). Then, there exist ∃s ∈ S such
that A∗ (J) * Qs and Ps * A∗ (L). Considering A∗ (J) * Qs, we have
Ps′ * Qs for any point s′ ∈ S and ∀Ps′ * Qr such that A ∩ N /∈ J for
∀N ∈ η (r). Suppose that Ps * Qm with N ∈ η (m) . Thus Ps′ * Qm and
A ∩N /∈ J and L ⊆ J so A ∩N /∈ L. Thus we get Ps ⊆ A∗ (L). But, this
is a contradiction.

(iii) Since {∅} ⊆ L for any ideal L on (S, S), therefore by (ii) and Example 3.6,
A∗ (L) ⊆ A∗ ({∅}) = cl (A), for A ∈ S.
Clearly, A∗ ⊆ cl (A∗) and hence we must show that cl (A∗) ⊆ A∗. Let

us suppose the contrary, that is cl (A∗) * A∗. There exist s ∈ S such that
cl (A∗) * Qs and Ps * A∗. Then, A∗ * Qs, and so Ps′ * Qs for ∃s′ ∈ S
and we have:

∀Ps′ * Qm, ∀N ∈ η (m) with A ∩N /∈ L.

Now let Ps * Qr and N ∈ η (r). Then we have Ps′ * Qr, and so A∩N /∈ L
for all N ∈ η(r). Hence we have Ps ⊆ A∗. But, this is a contradiction.

(iv) By (iii), we have (A∗)∗ = cl
(
(A∗)

∗) ⊆ cl (A∗) = A∗.
(v) Assume that A∗∪B∗ * (A ∪B)∗ , so there exist ∃s ∈ S such that A∗∪B∗ *

Qs and Ps * (A ∪B)∗. Considering A∗∪B∗ * Qs, there exist r, r′ ∈ S such
that Pr * Qs or Pr′ * Qs and ∃N ∈ η (s) with A ∩N /∈ L or B ∩N /∈ L
implies (A ∪B) ∩N /∈ L. Then (A ∪B)∗ * Qs which is a contradiction.
Contrary assume that (A ∪B)∗ * A∗ ∪B∗. Take s ∈ S where (A ∪B)∗

* Qs and Ps * A∗ ∪ B∗. For (A ∪B)∗ * Qs, there exists ∃s′ ∈ S and
∀r such that Ps′ * Qs and Ps * Qr. Thus we have ∃N ∈ η (r) with
(A ∪B)∩N /∈ L which leads to (A ∩N)∪(B ∩N) /∈ L implies (A ∩N) /∈ L
and (B ∩N) /∈ L. This gives the contradiction Ps ⊆ A∗ ∪B∗.

(vi) It is clear that I ∈ L satisfies I∗ = ∅ so that (A ∪ I)∗ = A∗ ∪ I∗ = A∗.

�

Theorem 3.8. Let (S, S) be a texture space and (L,G) be a di-ideal on (S, S).

(1) An operator cl∗ : S→ S, cl∗ (A) = A ∪A∗ has the following properties:
(i) cl∗ (∅) = ∅,
(ii) A ∈ S⇒ A ⊆ cl∗ (A),
(iii) A,B ∈ S⇒ cl∗ (A ∪B) = cl∗ (A) ∪ cl∗ (B) ,
(iv) A ∈ S⇒ cl∗ (cl∗ (A)) = cl∗ (A).
2. An operator int∗ : S→ S, int∗ (A) = A ∩A∗ has the following properties:
(i) int∗ (S) = S,
(ii) A ∈ S⇒ int∗ (A) ⊆ A,
(iii) A,B ∈ S⇒ int∗ (A ∩B) = int∗ (A) ∩ int∗ (B) ,
(iv) A ∈ S⇒ int∗ (int∗ (A)) = int∗ (A).

Proof. The proof of (2) is dual to the proof of (1) and is left to the interested reader.



TEXTURE SPACES WITH IDEAL 1603

Since ∅∗ = ∅ and (A ∪B)∗ = A∗ ∪B∗, (i) and (iii) are trivial, so we concentrate
on (ii) and (iv).

(ii) For A ∈ S we have cl∗ (A) = A ∪A∗ ⊇ A.
(iv) For A ∈ S we have cl∗ (cl∗ (A)) = (cl∗ (A)) ∪ (cl∗ (A))∗ ⊇ cl∗ (A). Con-

versely, by hypothesis and (iii) we have

cl∗ (cl∗ (A)) = cl∗ (A ∪A∗)
= cl∗ (A) ∪ cl∗ (A∗)
= (A ∪A∗) ∪

(
A∗ ∪ (A∗)∗

)
= A ∪A∗ ∪ (A∗)∗

⊆ A ∪A∗ ∪A∗ = A ∪A∗

= cl∗ (A) .

�

Theorem 3.9. Let (L,G) be a di-ideal on (S, S). Then the pair (τ∗ (G) , κ∗ (L)) is
a ditopology on (S, S) where,

τ∗ (G) = {U ∈ S : int∗ (U) = U} and κ∗ (L) = {U ∈ S : cl∗ (U) = U} .

Proof. We can show that the family κ∗ (L) verifies cotopology conditions of Defin-
ition 2.2.

(1) Both S and ∅ are in κ∗ (L), since, by Theorem 3.8, we have that cl∗ (S) =
S ∪ S∗ = S and cl∗ (∅) = ∅.

(2) If K1,K2 are nonempty elements of κ∗ (L), to show that K1 ∪ K2 is in
κ∗ (L), we compute

cl∗ (K1 ∪K2) = cl
∗ (K1) ∪ cl∗ (K2) = K1 ∪K2

because of cl∗ (K1) = K1 and cl
∗ (K2) = K2.

(3) If {Kα} is an indexed family of nonempty elements of κ∗ (L), to show that⋂
Kα is in κ∗ (L), we compute

cl∗
(⋂

Kα

)
⊆
⋂
cl∗ (Kα) =

⋂
Kα

because of
⋂
Kα ⊆ Kα for all α.

Now, we can show that the family τ∗ (G) verifies topology conditions of Definition
2.2.

(1) Both S and ∅ are in τ∗ (G), since, by Theorem 3.8, we have that int∗ (S) = S
and int∗ (∅) = ∅ ∩ ∅∗ = ∅.

(2) If G1, G2 are nonempty elements of τ∗ (G), to show that G1∩G2 is in τ∗ (G),
we compute

int∗ (G1 ∩G2) = int∗ (G1) ∩ int∗ (G2) = G1 ∩G2
because of int∗ (G1) = G1 and int

∗ (G2) = G2.
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(3) If {Gα} is an indexed family of nonempty elements of τ∗ (G) and G =⋃
Gα, then we need to show that G is in τ∗ (G). By Theorem 3.8 (2)(ii),

int∗ (G) ⊆ G. On the other hand, for each α, we compute
Gα = int

∗ (Gα) = int
∗ (Gα ∩G) = int∗ (Gα) ∩ int∗ (G) ⊆ int∗ (G) ,

by Theorem 3.8 (2)(iii), hence G =
⋃
Gα ⊆ int∗ (G) and consequently

int∗ (G) = G, G ∈ τ∗ (G).
�

Remark 3.10. Let a ditopology (τ , κ) be on the discrete texture space (X,P(X)).
We have already observed that if L = {∅} and G =P(X)� {∅}, then cl∗ (A) = A ∪
A∗ = A ∪ cl (A) = cl (A) and int∗ (A) = A ∩ A∗ = A ∩ int (A) = int (A), for all
A ∈ P(X). So, (τ∗ (G) , κ∗ (L)) = (τ , κ). Again, if L =P(X) and G = {∅}, then
A∗ = {∅} and A∗ = S, for all A ∈ P(X) and hence τ∗ (G) = P(X) = κ∗ (L) is the
discrete and codiscrete ditopological texture space.
Hence, for any di-ideal (L,G) on (X,P(X)) we get {∅} ⊆ L ⊆ P(X) and {∅} ⊆

G ⊆ P(X)� {∅}. So we can conclude by Theorem 3.7 (1) and (2), (ii), κ∗ ({∅}) ⊆
κ∗ (L) ⊆ κ∗ (P(X)) and τ∗ (P(X)� {∅}) ⊆ τ∗ (G) ⊆ τ∗ ({∅}), for any di-ideal (L,G)
on (X,P(X)). In particular, we have, for any two di-ideals (L,G) and (J,F) on
(X,P(X)), L ⊆ J→ κ∗ (L) ⊆ κ∗ (J) and G ⊆ F → τ∗ (F) ⊆ τ∗ (G).
Consequently, given a ditopology (τ , κ) on the discrete texture space (X,P(X))

with di-ideal (L,G), we say that (τ∗ (G) , κ∗ (L)) is finer than (τ , κ).

Lemma 3.11. Let (L,G) and (J,F) be di-ideals on (S, S). Then
(1) L

∨
J = {L ∪ J : L ∈ L, J ∈ J} and L ∩ J are ideals on (S, S).

(2) G
∨
F = {G ∪ F : G ∈ G, F ∈ F} and G ∩ F are co-ideals on (S, S).

Proof. (1) Let L and J be ideals over (S, S). First we show that L ∩ J is an
ideal. We prove the conditions (i) and (ii) of Definition 3.1 (a) and live the
proof of the other result to the reader.

(i) Let L ∈ L ∩ J and L′ ⊆ L, then L ∈ L and L ∈ J. Therefore, we have
L′ ∈ L and L′ ∈ J. Consequently, L′ ∈ L ∩ J.

(ii) Let L1 ∈ L ∩ J and L2 ∈ L ∩ J, then L1 ∈ L, L2 ∈ L, L1 ∈ J and L2 ∈ J.
Consequently, L1 ∪ L2 ∈ L and L1 ∪ L2 ∈ J and so L1 ∪ L2 ∈ L ∩ J.

(2) Let G and F be co-ideals over (S, S). Now we show that G
∨
F is a co-ideal.

We prove the conditions (i) and (ii) of Definition 3.1 (b) and live the proof
of the other result to the reader.

(i) Let G ∈ G
∨
F. Then G ∈ G or G ∈ F. Now G ∈ G implies there is at least

one G′ such that G′ ∈ G. Again, G ∈ F implies there is at least one G′ such
that G′ ∈ F. Therefore, we have G′ ∈ G

∨
F.

(ii) Let G1 ∈ G
∨
F and G2 ∈ G

∨
F. Since G1 ∩G2 is included in both G1 and

G2, G1 ∩G2 is included in G
∨
F.

�
Theorem 3.12. Let (S, S, τ , κ) be a ditopological texture space, and A ∈ S. Hence
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(1) Let L and J ideals on (S, S).
(i) A∗ (L ∩ J) = A∗ (L) ∪A∗ (J) ,
(ii) A∗ (L

∨
J) = A∗ (L, κ∗ (L)) ∩A∗ (J,κ∗ (J)) .

(2) Let G and F co-ideals on (S, S).
(i) A∗ (G

∨
F) = A∗ (G) ∩A∗ (F) ,

(ii) A∗ (G ∩ F) = A∗ (G, τ
∗ (G)) ∪A∗ (F,τ∗ (F)) .

Proof. We prove (1), leaving the dual proof of (2) to the interested reader.

(i) For by Theorem 3.7 (1)(ii) A∗ (L ∩ J) ⊇ A∗ (L) ∪ A∗ (J). To prove the
reverse inclusion, suppose that A∗ (L ∩ J) * A∗ (L)∪A∗ (J) and take s ∈ S
with A∗ (L ∩ J) * Qs and Ps * A∗ (L) ∪ A∗ (J). If A∗ (L ∩ J) * Qs then
Ps′ * Qs for any s′ ∈ S and ∀Ps′ * Qm, N ∈ η (m) with A ∩N /∈ (L ∩ J).
Let Ps * Qr with N ∈ η (r). Then Ps′ * Qr, so we have A ∩N /∈ L or

A ∩N /∈ J. Hence Ps ⊆ A∗ (L) or Ps ⊆ A∗ (J). This is a contradiction.
(ii) Suppose that A∗ (L, κ∗ (L))∩A∗ (J, κ∗ (J)) * A∗ (L

∨
J). Then, there exist

∃s ∈ S such that A∗ (L, κ∗ (L)) ∩ A∗ (J, κ∗ (J)) * Qs and Ps * A∗ (L
∨
J).

Considering A∗ (L, κ∗ (L))∩A∗ (J, κ∗ (J)) * Qs implies there is at least one
s′ ∈ S, Ps′ * Qs and ∀Ps′ * Qr, ∀N in η (r) with A ∩N /∈ L and there is
at least one s′′ ∈ S, Ps′′ * Qs and ∀Ps′′ * Qr, ∀N in η (r) with A ∩N /∈ J
for any r ∈ S. Let Ps * Qm with N ∈ η (m). Then Ps′ * Qm, so we have
A ∩N /∈ (L

∨
J). This gives the contradiction Ps ⊆ A∗ (L

∨
J).

Conversely, let A∗ (L
∨
J) * A∗ (L, κ∗ (L)) ∩ A∗ (J, κ∗ (J)). Take s ∈

S where A∗ (L
∨
J) * Qs and Ps * A∗ (L, κ∗ (L)) ∩ A∗ (J, κ∗ (J)). For

A∗ (L
∨
J) * Qs, there exists ∃s′ ∈ S and ∀r such that Ps′ * Qs implies

∀Ps′ * Qr and ∃N ∈ η (r) with A∩N /∈ L
∨
J. Then A∩N /∈ L or A∩N /∈

J. Thus Ps * Qr, ∀N in η (r) with A∩N /∈ L satisfies Ps ⊆ A∗ (L, κ∗ (L))
or Ps * Qr, ∀N in η (r) with A ∩N /∈ J satisfies Ps ⊆ A∗ (J, κ∗ (J)) which
leads to Ps ⊆ A∗ (L, κ∗ (L)) ∩A∗ (J, κ∗ (J)). This is a contradiction.

�

4. Weakly-bicontinuous difunction

We recall that a function f : X → Y between topological spaces X and Y is
called weakly-continuous [17] if f−1(V ) ⊆ int

(
f−1(cl(V ))

)
for all open set V ⊆ Y .

This leads to the following concepts for a difunction between ditopological texture
spaces.

Definition 4.1. Let (Sk, Sk, τk, κk), k = 1, 2 be ditopological texture spaces and
(f, F ) : (S1, S1)→ (S2, S2) be a difunction. Then (f, F ) is called:

(1) weakly-continuous F←(V ) ⊆ int (F←(cl(V ))) for all V ∈ τ2,

(2) weakly-cocontinuous if cl (f←(int(H))) ⊆ f←(H) for all H ∈ κ2,



1606 MEMET KULE AND ŞENOL DOST

(3) weakly-bicontinuous if it is both weakly-continuous and weakly-cocontinuous.

Lemma 4.2. Let (Sk, Sk, τk, κk), k = 1, 2 be ditopological texture spaces and
(f, F ) : (S1, S1) → (S2, S2) be a difunction. Then if (f, F ) is continuous (cocon-
tinuous, bicontinuous) then it is weakly- continuous (respectively, -cocontinuous,
-bicontinuous)

Proof. Suppose that (f, F ) is a continuous difunction. Let V ∈ τ2. Then F←(V ) ∈
τ1, and so int(F←(V )) = F←(V ). Hence we have, V ⊆ cl(V ) =⇒ F←(V ) ⊆
F←(cl(V )) =⇒ int(F←(V )) = F←(V ) ⊆ int (F←(cl(V ))) =⇒ (f, F ) is weakly-
continuous.

Now let (f, F ) be a cocontinuous difunction and H ∈ κ2. Then f←(H) ∈ κ1,
and so cl(f←(H)) = f←(H). Then int(H) ⊆ H =⇒ f←(int(H)) ⊆ f←(H) =⇒
cl(f←(int(H))) ⊆ cl(f←(H)) = f←(H) =⇒ (f, F ) is weakly-cocontinuous. �

Clearly, for any ditopological texture space (S, S, τ , κ), the identity difunction
(i, I) is weakly-bicontinuous difunction, since I←(B) = B = i←(B) for all B ∈ S2
by [5].

Recall that [5] f : X → Y is a point function if and only if (f, f ′) is a difunction
from (X,P(X)) to (Y,P(Y )) such that

f← = (f−1)′ = (f ′)
−1

where f ′ = (X×Y ) \ f . Note that f←(B) = (f ′)←(B) = f−1(B) for all B ∈ P(Y ).

Further, if (X,T) be a topological space then (T,T′) is a ditopology on the discrete
texture (X,P(X)) where T′ = {X \G | G ∈ T}. Then we have

Proposition 4.3. Let f : (X,T) → (Y,V) be a point function between topological
spaces and (f, f ′) : (X,P(X),T,T′)→ (Y,P(Y ),V,V′) be the corresponding difunc-
tion. Then f is weakly continuous ⇐⇒ (f, f ′) is weakly bicontinuous difunction.

Proof. Let V ∈ V. Since (f ′← = f−1, we have

f is weakly continuous ⇐⇒ f−1(V ) ⊆ int(f−1(cl(V ))
⇐⇒ (f ′←(V ) ⊆ int((f ′←(cl(V ))
⇐⇒ (f, f ′) is weakly-continuous
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Now let Y \H = H ′ ∈ V′. Then H ∈ V, and

f is weakly continuous ⇐⇒ f−1(H) ⊆ int(f−1(cl(H))
⇐⇒ X \ (int(f−1(cl(H)))) ⊆ X \ f−1(H)
⇐⇒ cl(X \ (f−1(cl(H)))) ⊆ f−1(Y \H) = f−1(H ′)

⇐⇒ cl(f−1(Y \ cl(H))) ⊆ f←(H ′)
⇐⇒ cl(f←(int(H ′))) ⊆ f←(H ′)
⇐⇒ (f, f ′) is weakly-cocontinuous

Now let (X,T) be a topological space and I be an ideal on X. Then (X,T, I) is
said to be ideal topological space. For A ⊆ X, the set

A∗ = {x ∈ X | ∀N ∈ N(x), A ∩N /∈ I}

is called local function of the set A where N(x) is the neighborhood system of x
[14]. �

Now suppose that (X,T) is a topological space and (Y,V, I) is an ideal topological
space. Then we recall that a function f : X → Y is called weakly ideal-continuous
[1] if f−1(V ) ⊆ int(f−1(cl∗(V ))) for all V ∈ V. This leads to the following concepts
for a difunction between ditopological texture spaces.

Definition 4.4. Let (Sj , Sj , τ j , κj), j = 1, 2 be ditopological texture spaces and
(L,G) be a di-ideal on (S2, S2). Then a difunction (f, F ) : (S1, S1, τ1, κ1) →
(S2, S2, τ2, κ2) is called:

(1) weakly ideal-continuous F←(V ) ⊆ int(F←(cl∗(V ))) for all V ∈ τ2,

(2) weakly ideal-cocontinuous if cl(f←(int∗(H))) ⊆ f←(H) for all H ∈ κ2,

(3) weakly ideal-bicontinuous if it is both weakly-ideal continuous and weakly
ideal-cocontinuous.

Lemma 4.5. Let (Sk, Sk, τk, κk), k = 1, 2 are ditopological texture spaces and (L,G)
be a di-ideal on (S2, S2) and (f, F ) : (S1, S1)→ (S2, S2) be a difunction. Then

(i) if (f, F ) is continuous (cocontinuous, -bicontinuous) then it is weakly ideal-
continuous (respectively, -cocontinuous, -bicontinuous).

(ii) if (f, F ) is weakly ideal-continuous (respectively, -cocontinuous, -bicontinuous)
then it is weakly-continuous (respectively, -cocontinuous, -bicontinuous)

Proof. (i) Since V ⊆ cl∗(V ) = V ∪ V ∗ and int∗(H) = H ∩ H∗ ⊆ H, the proofs
follows the same lines as that of Lemma 4.2, and is omitted.

(ii) Let V ∈ τ2 and H ∈ κ2. Then cl∗(V ) ⊆ cl(τ2,κ2)(V ) and int(τ2,κ2)(H) ⊆
int∗(H), since (τ , κ) ⊆ (τ∗, κ∗). Hence, the proof is completed. �
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Proposition 4.6. Let (Sk, Sk, τk, κk), k = 1, 2 are ditopological texture spaces and
(L,G) be a di-ideal on (S2, S2) where L = {∅},G = S2. Now let (f, F ) : (S1, S1)→
(S2, S2) be a difunction. Then (f, F ) is a weakly ideal bicontinuous difunction if
and only if it is a weakly bicontinuous difunction.

Proof. The proof of necessity is clear from Lemma 4.5(ii). Now let V ∈ τ2 and
H ∈ κ2. By Example 3.6, we have cl(V ) = cl∗(V ) and int(H) = int∗(H). Con-
sequently, if (f, F ) is weakly continuous difunction then it is weakly-ideal bicon-
tinuous difunction. �

We observe that if I is an ideal on a set Y then (I, I′) is a di-ideal on the discrete
texture (Y,P(Y )). Then we have:

Proposition 4.7. Let (Y,V, I) be an ideal topological space and (Y,V,V′, (I, I′))
be the corresponding di-ideal ditopological texture space. Now let f : (X,T) →
(Y,V) be a point function between topological spaces and (f, f ′) : (X,P(X),T,T′)→
(Y,P(Y ),V,V′) be the corresponding difunction. Then f is weakly ideal-continuous
function ⇐⇒ (f, f ′) is weakly ideal-bicontinuous difunction.

Proof. The proof follows the same lines as that of Proposition 4.3, and is omitted.
�

5. Conclusion

The main purpose of this paper is to introduce the notion of ditopological texture
spaces with ideal, which is finer than the given ditopological texture space on the
discrete texture space (X,P(X)). We study the notions of di-local function and
weakly di-ideal bicontinuous on ditopological texture space with di-ideal. Also,
in the framework of this paper, there are still many other aspects of ditopological
texture space with di-ideal, namely, compactness, uniformity and separation axiom,
etc. which can be investigated further.
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