
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 1, Pages 771—775 (2019)
DOI: 10.31801/cfsuasmas.472602
ISSN 1303—5991 E-ISSN 2618-6470

Available online: April 30, 2018

http://communications.science.ankara.edu.tr/index.php?series=A1

A CLASS OF SUBMERSIONS AND COMPATIBLE MAPS IN
FINSLER GEOMETRY

MIRCEA CRASMAREANU

Abstract. We introduce a class of submersions between two Finslerian ma-
nifolds and the class of Finsler-compatible maps which contains the previous
class. Defining also the notion of stretch it follows an upper bound for the
stretch of these submersions. If the support manifold for the considered Fins-
lerian geometries is the same we introduce a new function, called conformality,
as a way to measure quantitatively the difference between the given geometries.

1. Introduction

The notion of Riemannian submersion is a main tool in the study of relationship
between two given Riemann manifolds. In the last decades a number of books was
dedicated to this subject and we cite only two of them: a most recent one is [8].
A well-known generalization of Riemann geometry is the Finslerian one and the

question to extend the above notion to this setting appears in the list of open
problems of [2]. Partial answers are given in [1] and [3]. A more general notion
of Lagrangian adapted to a submersion was introduced in [7]. We remark in [3]
that this problem can be interesting from the point of view of Finslerian versions
of Kaluza-Klein theories.
The aim of this short note is to introduce two types of maps between two given

Finslerian geometries. More precisely, in the first section we generalize two types
of maps from Riemannian framework, the first being a submersion and the second
a compatibility condition expressed in terms of induced norms. In the Riemannian
case, the first class of maps was introduced only between Euclidean spheres and
is a particular case of the second class. We introduce also the notion of stretch
function associated to the given Finslerian manifolds. Our class of submersions
have a bounded stretch.
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In the second section we consider again two Finsler metrics F1, F2 but on the
same manifoldM . We introduce a new function c on the tangent bundle TM called
conformality as a quantitative measure of the difference between F1 and F2. The
name is chosen since in the case of a conformal transformation F2 = ρF1 we have
c = F2 and in the case of a Randers transformation of the Riemannian metric a we
get a conformal transformation of a. We propose as an open problem the further
study of this function and its possible relationship with the quasiconformality in a
Finslerian setting.

2. A class of submersions in Finsler geometry and Finsler-compatible
maps

Let M be a smooth m-dimensional manifold with m ≥ 2 and π : TM → M
its tangent bundle. Let x = (xi) = (x1, ..., xm) be local coordinates on M and
(x, y) = (xi, yi) = (x1, ..., xm, y1, ...., ym) the induced coordinates on TM . Denote
by O the null-section of π.
Recall after [3] that a Finsler fundamental function on M is a map F : TM →

R+ = [0,+∞) with the following properties:
F1) F is smooth on the slit tangent bundle T0M := TM \O and continuous on O,
F2) F is positive homogeneous of degree 1: F (x, λy) = λF (x, y) for every λ > 0,

F3) the matrix (gij) =
(
1
2
∂2F 2

∂yi∂yj

)
is invertible and its associated quadratic form is

positive definite.
The tensor field g = {gij(x, y); 1 ≤ i, j ≤ m} is called the Finsler metric and the
homogeneity of F implies:

F 2(x, y) = gijy
iyj = yiy

i (2.1)

where yi = gijy
j . The pair (M,F ) is called Finsler manifold and the restriction of

F to a fiber TxM of TM is a norm F (x, ·). Then g yields a Riemannian metric GS
on TM called Sasaki.

Example 1. (Riemannian geometry) Let a = (aij(x)) be a Riemannian metric on
M . It is well-known that F (x, y) =

√
aij(x)yiyj is a Finslerian structure on M

with g = a.

Fix now the scalar η > 0 and a smooth map f : (Mm, F1) → (Nn, F2) between
two Finsler manifolds with m > n. As usually, the vertical bundle of f is the
vectorial bundle V (f) over M having as fibre Vx := Ker df(x). We introduce:

Definition 1. i) An Ehresmann connection or horizontal bundle for f is a distri-
bution H(f) supplementary to V (f), i.e. for all x ∈M we have:

TxM = Vx(f)⊕Hx(f). (2.2)

ii) f is called η-submersion if M admits a horizontal bundle Hη(f) of dimension
n and GS-orthogonal to V (f) such that for all x ∈M and v ∈ Hη

x(f):

F2(f(x), df(x)(v)) = ηF1(x, v) (2.3)
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iii) f is called Finsler-compatible map if there exists a C0-function λ : N → R+
such that for every x ∈M and Y ∈ Tf(x)N there exists X ∈ TxM with:

Y = df(x)(X), F2(f(x), Y ) ≥ λ(f(x))F1(x,X). (2.4)

Remark 1. 1) If F1 and F2 are the Riemann metrics of Example 1 then the notion
of Finsler-compatible map is particularized to metric-compatible map introduced in
[9, p. 68].
2) Again, in the Riemannian particular case the notion of ii) from the above defi-
nition was introduced by Agnes Hsu without any name in [5, p. 195]. The support
manifolds are the unit Euclidean spheres and their set is denoted Hm

n (η). We point
out that in literature there exist the notions of horizontally homothetic and hori-
zontally conformal submersion; see for example [6].

The following result is a direct consequence of the Rank Theorem and connects
the types of maps introduced in the definition 1:

Proposition 1. If f is an η-submersion then its rank is n i.e. f is indeed a
submersion. Moreover, f is a Finsler-compatible map with a constant λ = η.

In the following we introduce the notion of stretch for a given map.

Definition 2. Fix x ∈ M and the smooth map f : (Mm, F1) → (Nn, F2) with
arbitrary m and n. The stretch of f in x with respect to F1 and F2 is the positive
scalar:

δF1,F2,f (x) := sup{F2(x, df(x)(v));F1(x, v) = 1}. (2.5)

Remark 2. i) If M = N and f is the identity we recover the notion of [4].
ii) Due to the homogeneity of the Finsler fundamental function we get:

δF1,F2,f (x) := sup{
√

(g2)ab(x, df(x)(v))
∂fa

∂xi
(x)

∂f b

∂xj
(x)vivj ; (g1)ij(x, v)vivj = 1}.

(2.6)
Here i, j = 1, ...,m, a, b = 1, ..., n and f = (f1, ..., fn).

In particular, if f is an η-submersion then its stretch is bounded:

0 < δF1,F2,f (x) ≤ η (2.7)

for all x ∈M . For the Riemannian case this inequality is the remark 3.1.(vi) of [5,
p. 197]. In fact, let v0 ∈ TxM satisfying the equality case in (2.5):

F1(x, v0) = 1, F2(x, df(x)(v0)) = δF1,F2,f (x). (2.8)

We have the G1S-orthogonal decomposition (2.2) and then:

v0 = vv0 + vη0 , vv0 ∈ Vx(f), vη0 ∈ Hη
x(f). (2.9)

Therefore:

δF1,F2,f (x) = F2(f(x), df(x)(vη0 )) = ηF1(x, v
η
0 ) ≤ ηF1(x, v0) = η. (2.10)

In the last inequality we use the fact that an orthogonal projection decreases the
norm.
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3. A conformality function between two Finslerian geometries

We return now to the general setting f : (M,F1) → (N,F2) and suppose now
thatM = N . Inspired by the stretch function we introduce a new way to "measure
the difference" between F1 and F2:

Definition 3. The conformality function cF1,F2,f : TM → R+ is:
cF1,F2,f (x, v) = sup{F2(f(x), df(x)(w));w ∈ TxM,F1(x,w) = F1(x, v)}. (3.1)

Example 2. Suppose that f = 1M . Then:

cF1,F2,1M (x, v) = sup{F2(x,w);w ∈ TxM,F1(x,w) = F1(x, v)} (3.2)

and in the particular case of F2 = ρF1 with ρ ∈ C∞+ (M) a smooth strictly positive
function on M we recover F2. This example explains the given name for c.

Example 3. (Randers geometry) Let (M,a) be the Riemannian manifold of ex-
ample 1 and let b = (bi(x)) ∈ Ω1(M) be an 1-form with ‖b‖a < 1. The function
F : TM → R+, FR(x, y) =

√
aijyiyj + bi(x)yi is a Finsler fundamental function

which is called Randers. We are interested in computing ca,FR,1M :

ca,FR,1M (x, v) = sup{‖w‖a+b(w); ‖w‖a = ‖v‖a} = ‖v‖a+sup{b(w); ‖w‖a = ‖v‖a}.
(3.3)

A Cauchy-Schwarz type argument as in [4, p. 87] gives:

ca,FR,1M (x, v) = ‖v‖a + ‖b(x)‖a‖v‖a = (1 + ‖b(x)‖a)‖v‖a (3.4)

and hence ca,FR,1M is a conformal transformation of the Riemannian metric a.

An immediate property of the function c is given by: cF1,F2,f (x, 0) = 0. Also, a
straightforward computation yields the positive homogeneity:

λ 6= 0 : cF1,F2,f (x, λv) = |λ|cF1,F2,f (x, v). (3.5)

For v ∈ TxM , v 6= 0 we have the inequality:

cF1,F2,f (x, v) ≤ δF1,F2,f (x) · F1(x, v) (3.6)

since w̄ := w
F1(x,v)

belongs to the indicatrix of F1: F1(x, w̄) = 1 and we plug w̄ in
(2.5). We remark from Example 2 above that in the Randers geometry the relation
(3.6) is an equality since the stretch of a Randers metric was computed in [4, p.
87] as: δRanders(x) = 1 + ‖b(x)‖a. A first open problem is to determine conditions
or geometries making equality in (3.6)
We consider a second open problem the further study of this function and its

possible relationship with the quasiconformality in a Finslerian setting. Our hope
is that under "mild conditions" the function c yields a (pseudo)distance:

dF1,F2,c(x, y) = inf{
∫ 1

0

cF1,F2,f (γ(t), γ′(t))dt} (3.7)

where the infimum is taken over all piecewise C1-curves γ : [0, 1]→M joining x to
y.
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