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THE MINKOWSKI’S INEQUALITIES UTILIZING NEWLY
DEFINED GENERALIZED FRACTIONAL INTEGRAL

OPERATORS

FUAT USTA, HÜSEYIN BUDAK, FATMA ERTUGRAL, AND MEHMET ZEKI SARIKAYA

Abstract. Motivated by the recent generalized fractional integral operators
proposed by Tunc et. al. [22], we establish a generalization of the reverse
Minkowski’s inequalities. Within this context, we provide new upper bounds
of inequalities utilizing generalized fractional integral operators and show and
state other inequalities related to this fractional integral operator.

1. Introduction

Recently, a number of scientist in the field of mathematics have introduced differ-
ent results about the fractional derivatives and integrals such as Riemann-Liouville
fractional derivative, Riemann-Liouville fractional integral operator, Hadamard in-
tegral operator, Saigo fractional integral operator and some other, and applied them
to some well-know inequalities with applications [1]-[22]. In this paper the authors
will provide the some reverse Minkowski’s inequalities by means of the generalized
fractional integral operators.
The overall structure of the study takes the form of four sections including in-

troduction. The remaining part of the paper proceeds as follows: In Section 2, we
introduce generalized k-fractional integrals of a function with respect to the another
function which generalizes different types of fractional integrals, including Riemann-
Lioville fractional, Hadamard fractional integrals, Katugampola fractional integral,
(k, s)-fractional integral operators and many others. In section 3, we provide the
main results involving the reverse Minkowski’s inequality with the help of frac-
tional integral operators while in section 4 discussing other inequalities using this
fractional integral operators. Finally concluding remarks summarize the article.

Received by the editors: September 12, 2017; Accepted: April 06, 2018.
2010 Mathematics Subject Classification. 26D15, 26A33, 26B25, 26D10.
Key words and phrases. Fractional integral operators, Hermite-Hadamard inequality, midpoint

inequality, convex function.

c©2018 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

686



THE MINKOWSKI INEQUALITIES... 687

2. New Generalized Fractional Integral Operators

In this section we will review the concept of the generalized k-fractional integrals
of a function with respect to the another function introduced by Tunc et.al.[22].

Definition 1. In [8] Diaz and Pariguan have defined k -gamma function Γk that
is generalization of the classical gamma. Γk is given by formula

Γk (x) = lim
n→∞

n!kn(nk)
x
k−1

(x)n,k
k > 0.

It has shown that Mellin transform of the exponential function e−
tk

k is the k-gamma
function, clearly given by

Γk (α) :=

∫ ∞
0

e−
tk

k tα−1dt.

Obviously, Γk (x+ k) = xΓk (x) , Γ(x) = lim
k→1

Γk (x) and Γk (x) = k
x
k−1 Γ(xk ).

Definition 2. Let define the function

Fσ,kρ,λ (x) :=

∞∑
m=0

σ (m)

kΓk (ρkm+ λ)
xm (ρ, λ > 0; |x| < R) ,

where the coeffi cients σ (m) (m ∈ N0 = N∪{0}) is a bounded sequence of positive
real numbers and R is the set of real numbers.

Definition 3. For k > 0, let g : [a, b]→ R be an increasing and positive monotone
function having a continuous derivative g′(x) on (a, b) . The left and right sided
generalized k-fractional integrals of f with respect to the function g on [a, b] are
defined, respectively, as follows:

J σ,k,gρ,λ,a+;ωf(x) =

x∫
a

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
] f(t)dt, x > a, (2.1)

and

J σ,k,gρ,λ,b−;ωf(x) =

b∫
x

g′(t)

(g(t)− g(x))
1−λk
Fσ,kρ,λ [ω (g(t)− g(x))

ρ
] f(t)dt, x < b, (2.2)

where λ, ρ > 0, ω ∈ R.
Remark 1. The significant special cases of the integral operators (2.1) and (2.2)
are mentioned below:
1) For k = 1, operator in (2.1) leads to generalized fractional integral of f with

respect to the function g on [a, b] . This relation is given by

J σ,gρ,λ,a+;ωf(x) =

x∫
a

g′(t)

(g(x)− g(t))
1−λF

σ
ρ,λ [ω (g(x)− g(t))

ρ
] f(t)dt, x > a.
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2) For g(t) = t, operator in (2.1) leads to generalized k-fractional integral of f .
This relation is given by

J σ,kρ,λ,a+;ωf(x) =

x∫
a

(x− t)
λ
k−1 Fσ,kρ,λ [ω (x− t)ρ] f(t)dt, x > a.

3) For g(t) = ln t, operator in (2.1) leads to generalized Hadamard k-fractional
integral of f . This relation is given by

Hσ,kρ,λ,a+;ωf(x) =

x∫
a

(
ln
x

t

)λ
k−1

Fσ,kρ,λ

[
ω
(

ln
x

t

)ρ]
f(t)

dt

t
, x > a.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} operator in (2.1) leads to generalized (k, s)-
fractional integral of f . This relation is given by

sJ σ,kρ,λ,a+;ωf(x) = (s+1)1−λk

x∫
a

(
xs+1 − ts+1

)λ
k−1

trFσ,kρ,λ

[
ω

(
xs+1 − ts+1

s+ 1

)ρ]
f(t)dt, x > a.

Remark 2. Similarly, all above special cases can also be seen for operator (2.2).

Remark 3. For k = 1 and g(t) = t, operators in (2.1) and (2.2) reduce to the
following generalized fractional integral operators defined by Raina [21] and Agarwal
et. al [1], respectively:

J σρ,λ,a+;ωf(x) =

∫ x

a

(x− t)λ−1 Fσρ,λ [ω (x− t)ρ] f(t)dt, x > a, (2.3)

J σρ,λ,b−;ωf(x) =

∫ b

x

(t− x)
λ−1 Fσρ,λ [ω (t− x)

ρ
] f(t)dt, x < b, (2.4)

Remark 4. One can obtain other new generalized fractional integral operators with
different choices of g.

Remark 5. For λ = α, σ(0) = 1, w = 0 in Definition 3, then we have the
generalized fractional operators defined by Akkurt et al. in [3].

Remark 6. Let λ = α, σ(0) = 1, w = 0 in Definition 3.
1) Choosing k = 1, then we have fractional integrals of a function f with respect

to function g. [12].
2) Choosing g(t) = t, then we have k-fractional integrals [15].
3) Choosing k = 1 and g(t) = ln t, then we have Hadamard fractional integrals

[12].
4) Choosing g(t) = ts+1

s+1 , s ∈ R − {−1}, then we have (k, s)-fractional integral
operators [18].
5) Choosing k = 1 and g(t) = ts+1

s+1 , s ∈ R − {−1}, then we have Katugampola
fractional integral operators [9].
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6) Choosing k = 1 and g(t) = t, then we have Riemann-Lioville fractional
integral operators [12].

3. Reverse Minkowski Fractional Integral Inequality new
generalized fractional integral operators

Theorem 1. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 < m ≤ u(t)

v(t) ≤M and ∀t ∈ [0, x] , then we have the following reverse Minkowski’s
inequality associated with the generalized k-fractional integrals with respect to the
function g[

J σ,k,gρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p ≤ C1

[
J σ,k,gρ,λ,a+;ω(u+ v)p(x)

] 1
p

where C1 = M(m+1)+M+1
(M+1)(m+1) and p ≥ 1, λ, ρ > 0, ω ∈ R.

Proof. Since u(t)
v(t) ≤M, t ∈ [a, x] , we deduce that

u(t) ≤M [u(t) + v(t)]−Mu(t)

which yields

up(t) ≤
(

M

M + 1

)p
[u(t) + v(t)]

p
. (3.1)

Then multiplying by

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (3.1) and integrating on [a, x], we get
x∫
a

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]up(t)dt

≤
(

M

M + 1

)p x∫
a

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
] [u(t) + v(t)]

p
dt.

As a result, we deduce that[
J σ,k,gρ,λ,a+;ωu

p(x)
] 1
p ≤ M

M + 1

[
J σ,k,gρ,λ,a+;ω(u+ v)p(x)

] 1
p

. (3.2)

On the other hand, as m ≤ u(t)
v(t) , t ∈ [a, x], we have

vp(t) ≤
(

1

m+ 1

)p
[u(t) + v(t)]

p
. (3.3)
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Similarly, multiplying by

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (3.3) and integrating on [a, x], we get[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p ≤ 1

m+ 1

[
J σ,k,gρ,λ,a+;ω(u+ v)p(x)

] 1
p

. (3.4)

Then adding the inequalities (3.2) and (3.4), the desired result has been obtained.
�

Corollary 1. We assume that the conditions of Theorem 1 hold.
1) For k = 1 in Theorem 1, we have the following reverse Minkowski’s inequality

associated with the generalized fractional integrals with respect to the function g

s
[
J σ,gρ,λ,a+;ωu

p(x)
] 1
p

+
[
J σ,gρ,λ,a+;ωv

p(x)
] 1
p ≤ C1

[
J σ,gρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

2) For g(t) = t in Theorem 1, we have the following reverse Minkowski’s inequality
associated with the generalized k-fractional integrals

s
[
J σ,kρ,λ,a+;ωu

p(x)
] 1
p

+
[
J σ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ C1

[
J σ,kρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

3) For g(t) = ln t in Theorem 1, we have the following reverse Minkowski’s inequal-
ity associated with the generalized Hadamard k-fractional integrals

s
[
Hσ,kρ,λ,a+;ωu

p(x)
] 1
p

+
[
Hσ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ C1

[
Hσ,kρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 1, we have the following reverse
Minkowski’s inequality associated with the generalized (k, s)-fractional integrals

s
[
sJ σ,kρ,λ,a+;ωu

p(x)
] 1
p

+
[
sJ σ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ C1

[
sJ σ,kρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

Theorem 2. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 < m ≤ u(t)

v(t) ≤M and ∀t ∈ [0, x] , then we have the following reverse Minkowski’s
inequality associated with the generalized k-fractional integrals with respect to the
function g[
J σ,k,gρ,λ,a+;ωu

p(x)
] 2
p

+
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 2
p ≥ C2

[
J σ,k,gρ,λ,a+;ωu

p(x)
] 1
p
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p

where C1 = (M+1)(m+1)
M − 2 and p ≥ 1, λ, ρ > 0, ω ∈ R.
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Proof. From the inequalities (3.2) and (3.4), we have

(M + 1)(m+ 1)

M

[
J σ,k,gρ,λ,a+;ωu

p(x)
] 1
p
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p ≤

[
J σ,k,gρ,λ,a+;ω(u+ v)p(x)

] 2
p

.

(3.5)
Then, thanks to the Minkowski’s inequality, we get[

J σ,k,gρ,λ,a+;ω(u+ v)p(x)
] 2
p ≤

([
J σ,k,gρ,λ,a+;ωu

p(x)
] 1
p

+
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p

)2

. (3.6)

Consequently, by substituting (3.6) into (3.5), we obtain the desired result. �

Corollary 2. We assume that the conditions of Theorem 2 hold.
1) For k = 1 in Theorem 2, we have the following reverse Minkowski’s inequality
associated with the generalized fractional integrals with respect to the function g[
J σ,gρ,λ,a+;ωu

p(x)
] 2
p

+
[
J σ,gρ,λ,a+;ωv

p(x)
] 2
p ≥ C2

[
J σ,gρ,λ,a+;ωu

p(x)
] 1
p
[
J σ,gρ,λ,a+;ωv

p(x)
] 1
p

.

2) For g(t) = t in Theorem 2, we have the following reverse Minkowski’s inequality
associated with the generalized k-fractional integrals[
J σ,kρ,λ,a+;ωu

p(x)
] 2
p

+
[
J σ,kρ,λ,a+;ωv

p(x)
] 2
p ≥ C2

[
J σ,kρ,λ,a+;ωu

p(x)
] 1
p
[
J σ,kρ,λ,a+;ωv

p(x)
] 1
p

.

3) For g(t) = ln t in Theorem 2, we have the following reverse Minkowski’s inequal-
ity associated with the generalized Hadamard k-fractional integrals[
Hσ,kρ,λ,a+;ωu

p(x)
] 2
p

+
[
Hσ,kρ,λ,a+;ωv

p(x)
] 2
p ≥ C2

[
Hσ,kρ,λ,a+;ωu

p(x)
] 1
p
[
Hσ,kρ,λ,a+;ωv

p(x)
] 1
p

.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 2, we have the following reverse
Minkowski’s inequality associated with the generalized (k, s)-fractional integrals[
sJ σ,kρ,λ,a+;ωu

p(x)
] 2
p

+
[
sJ σ,kρ,λ,a+;ωv

p(x)
] 2
p ≥ C2

[
sJ σ,kρ,λ,a+;ωu

p(x)
] 1
p
[
sJ σ,kρ,λ,a+;ωv

p(x)
] 1
p

.

4. Alternative Fractional Integral Inequalities with new
generalized fractional integral operators

Theorem 3. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 < m ≤ u(t)

v(t) ≤M and ∀t ∈ [0, x] , then we have the following inequality associated
with the generalized k-fractional integrals with respect to the function g[

J σ,k,gρ,λ,a+;ωu
p(x)

] 1
p
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p ≤ C3

[
J σ,k,gρ,λ,a+;ω(u+ v)p(x)

] 1
p

where C3 =
(
M
m

) 1
pq , 1

p + 1
q = 1, p ≥ 1 and λ, ρ > 0, ω ∈ R.
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Proof. Since u(t)
v(t) ≤M, t ∈ [a, x] , we deduce that

v
1
q (t) ≥

(
1

M

) 1
q

u
1
q (t)

which yields

u
1
p (t)v

1
q (t) ≥

(
1

M

) 1
q

u(t). (4.1)

Multiplying by
g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.1) and integrating on [a, x], we get(
1

M

) 1
q

J σ,k,gρ,λ,a+;ωu(x) ≤ J σ,k,gρ,λ,a+;ωu
1
p (x)v

1
q (x),

i.e. (
1

M

) 1
pq [
J σ,k,gρ,λ,a+;ωu(x)

] 1
p ≤

[
J σ,k,gρ,λ,a+;ωu

1
p (x)v

1
q (x)

] 1
p

. (4.2)

More over, as m ≤ u(t)
v(t) , t ∈ [a, x] , we have

m
1
p v

1
p (t) ≤ u

1
p (t)

which gives
m

1
p v(t) ≤ u

1
p (t)v

1
q (t). (4.3)

Then, multiplying by

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.3) and integrating on [a, x], we get

m
1
pq

[
J σ,k,gρ,λ,a+;ωv(x)

] 1
p ≤

[
J σ,k,gρ,λ,a+;ωu

1
p (x)v

1
q (x)

] 1
p

. (4.4)

Considering the inequalities (4.2) and (4.4), we obtain the required result. �

Corollary 3. We assume that the conditions of Theorem 3 hold.
1) For k = 1 in Theorem 3, we have the following inequality associated with the
generalized fractional integrals with respect to the function g[

J σ,gρ,λ,a+;ωu
p(x)

] 1
p
[
J σ,gρ,λ,a+;ωv

p(x)
] 1
p ≤ C3

[
J σ,gρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

2) For g(t) = t in Theorem 3, we have the following inequality associated with the
generalized k-fractional integrals[

J σ,kρ,λ,a+;ωu
p(x)

] 1
p
[
J σ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ C3

[
J σ,kρ,λ,a+;ω(u+ v)p(x)

] 1
p

.
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3) For g(t) = ln t in Theorem 3, we have the following inequality associated with
the generalized Hadamard k-fractional integrals[

Hσ,kρ,λ,a+;ωu
p(x)

] 1
p
[
Hσ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ C3

[
Hσ,kρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 3, we have the following inequality
associated with the generalized (k, s)-fractional integrals[

sJ σ,kρ,λ,a+;ωu
p(x)

] 1
p
[
sJ σ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ C3

[
sJ σ,kρ,λ,a+;ω(u+ v)p(x)

] 1
p

.

Theorem 4. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 < m ≤ u(t)

v(t) ≤M and ∀t ∈ [0, x] , then we have the following inequality associated
with the generalized k-fractional integrals with respect to the function g

J σ,k,gρ,λ,a+;ωu(x)v(x) ≤ C4J σ,k,gρ,λ,a+;ω(up + vp)(x) + C5J σ,k,gρ,λ,a+;ω(uq + vq)(x)

where C4 = 2p−1

p

(
M
M+1

)p
, C5 = 2q−1

q

(
1

m+1

)q
, 1
p + 1

q = 1, p ≥ 1 and λ, ρ > 0,

ω ∈ R.

Proof. Multiplying by

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (3.1) and integrating on [a, x], we get

J σ,k,gρ,λ,a+;ωu
p(x) ≤

(
M

M + 1

)p
J σ,k,gρ,λ,a+;ω(u+ v)p(x). (4.5)

As m ≤ u(t)
v(t) , t ∈ [a, x], we have

vq(t) ≤
(

1

m+ 1

)q
[u(t) + v(t)]

q
. (4.6)

Similarly, multiplying by

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.6) and integrating on [a, x], we get

J σ,k,gρ,λ,a+;ωv
q(x) ≤

(
1

m+ 1

)q
J σ,k,gρ,λ,a+;ω(u+ v)q(x). (4.7)
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Applying the Young inequality, we have

u(t)v(t) ≤ up(t)

p
+
vq(t)

q
(4.8)

and multiplying by

g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.8) and integrating on [a, x], we get

J σ,k,gρ,λ,a+;ω (uv) (x) ≤ 1

p
J σ,k,gρ,λ,a+;ωu

p(x) +
1

q
J σ,k,gρ,λ,a+;ωv

q(x). (4.9)

Then, by substituting the inequalities (4.5) and (4.7) into (4.9), we obtain

sJσ,k,g
ρ,λ,a+;ω

(uv) (x) ≤
1

p

(
M

M + 1

)p
Jσ,k,g
ρ,λ,a+;ω

(u + v)
p
(x) +

1

q

(
1

m + 1

)q
Jσ,k,g
ρ,λ,a+;ω

(u + v)
q
(x). ( 4 .1 0 )

Using the fact that (a, b)r ≤ 2r−1(ar + br), r > 1, a, b ≥ 0 in the right hand side of
the inequality (4.10), we have

sJσ,k,g
ρ,λ,a+;ω

(uv) (x) ≤
1

p

(
M

M + 1

)p
Jσ,k,g
ρ,λ,a+;ω

(u + v)
p
(x) +

1

q

(
1

m + 1

)q
Jσ,k,g
ρ,λ,a+;ω

(u + v)
q
(x)

≤
1

p

(
M

M + 1

)p
2
p−1Jσ,k,g

ρ,λ,a+;ω
(u
p
+ v

p
)(x) +

1

q

(
1

m + 1

)q
2
q−1Jσ,k,g

ρ,λ,a+;ω
(u
q
+ v

q
)(x).

Thus, the proof is completed. �

Corollary 4. We assume that the conditions of Theorem 4 hold.
1) For k = 1 in Theorem 4, we have the following inequality associated with the
generalized fractional integrals with respect to the function g

J σ,gρ,λ,a+;ωu(x)v(x) ≤ C4J σ,gρ,λ,a+;ω(up + vp)(x) + C5J σ,gρ,λ,a+;ω(uq + vq)(x).

2) For g(t) = t in Theorem 4, we have the following inequality associated with the
generalized k-fractional integrals

J σ,kρ,λ,a+;ωu(x)v(x) ≤ C4J σ,kρ,λ,a+;ω(up + vp)(x) + C5J σ,kρ,λ,a+;ω(uq + vq)(x).

3) For g(t) = ln t in Theorem 4, we have the following inequality associated with
the generalized Hadamard k-fractional integrals

Hσ,kρ,λ,a+;ωu(x)v(x) ≤ C4Hσ,kρ,λ,a+;ω(up + vp)(x) + C5Hσ,kρ,λ,a+;ω(uq + vq)(x).

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 4, we have the following inequality
associated with the generalized (k, s)-fractional integrals

sJ σ,kρ,λ,a+;ωu(x)v(x) ≤ Cs4J
σ,k
ρ,λ,a+;ω(up + vp)(x) + Cs5J

σ,k
ρ,λ,a+;ω(uq + vq)(x).
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Theorem 5. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 < n < m ≤ u(t)

v(t) ≤ M and ∀t ∈ [0, x] , then we have the following inequalities
associated with the generalized k-fractional integrals with respect to the function g

M + 1

M − n

[
J σ,k,gρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p ≤

[
J σ,k,gρ,λ,a+;ωu

p(x)
] 1
p

+
[
J σ,k,gρ,λ,a+;ωv

q(x)
] 1
p

≤ m+ 1

m− c

[
J σ,k,gρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p

where p ≥ 1 and λ, ρ > 0, ω ∈ R.

Proof. From the assumption 0 < n < m ≤ u(t)
v(t) ≤M , we have

m− n ≤ u(t)− nv(t)

v(t)
≤M − n

which yields
(u(t)− nv(t))

p

(M − n)
p ≤ vp(t) ≤ (u(t)− nv(t))

p

(m− n)
p . (4.11)

Similarly, we obtain

1

M
≤ v(t)

u(t)
≤ 1

m
⇒ 1

M
− 1

n
≤ v(t)

u(t)
− 1

n
≤ 1

m
− 1

n
⇒ m− n

mn
≤ u(t)− nv(t)

nu(t)
≤ M − n

Mn

which yields

Mp

(M − n)
p (u(t)− nv(t))

p ≤ up(t) ≤ mp

(m− n)
p (u(t)− nv(t))

p
. (4.12)

Multiplying by
g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.11) and integrating on [a, x], we get

s 1

M − n

[
Jσ,k,g
ρ,λ,a+;ω

(u(x) − nv(x))p
] 1
p ≤

[
Jσ,k,g
ρ,λ,a+;ω

v
q
(x)

] 1
p ≤

1

m − c

[
Jσ,k,g
ρ,λ,a+;ω

(u(x) − nv(x))p
] 1
p . ( 4 .1 3 )

Following the similar steps for (4.12), we obtain

s M

M − n

[
Jσ,k,g
ρ,λ,a+;ω

(u(x) − nv(x))p
] 1
p ≤

[
Jσ,k,g
ρ,λ,a+;ω

u
q
(x)

] 1
p ≤

m

m − c

[
Jσ,k,g
ρ,λ,a+;ω

(u(x) − nv(x))p
] 1
p . ( 4 .1 4 )

Considering the inequalities (4.13) and (4.14), we obtain the required result.
In order to validate our result we can show that M+1

M−n ≤
m+1
m−n . That is, from the

assumption 0 < n < m ≤ u(t)
v(t) ≤M , we have

mn+m ≤ mn+M ≤Mn+M ⇒ (M+1)(m−n) ≤ (m+1)(M−n)⇒ M + 1

M − n ≤
m+ 1

m− n.

�
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Corollary 5. We assume that the conditions of Theorem 5 hold.
1) For k = 1 in Theorem 5, we have the following inequality associated with the
generalized fractional integrals with respect to the function g

M + 1

M − n

[
J σ,gρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p ≤

[
J σ,gρ,λ,a+;ωu

p(x)
] 1
p

+
[
J σ,gρ,λ,a+;ωv

q(x)
] 1
p

≤ m+ 1

m− c

[
J σ,gρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p

.

2) For g(t) = t in Theorem 5, we have the following inequality associated with the
generalized k-fractional integrals

M + 1

M − n

[
J σ,kρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p ≤

[
J σ,kρ,λ,a+;ωu

p(x)
] 1
p

+
[
J σ,kρ,λ,a+;ωv

q(x)
] 1
p

≤ m+ 1

m− c

[
J σ,kρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p

.

3) For g(t) = ln t in Theorem 5, we have the following inequality associated with
the generalized Hadamard k-fractional integrals

M + 1

M − n

[
Hσ,kρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p ≤

[
Hσ,kρ,λ,a+;ωu

p(x)
] 1
p

+
[
Hσ,kρ,λ,a+;ωv

q(x)
] 1
p

≤ m+ 1

m− c

[
Hσ,kρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p

.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 5, we have the following inequality
associated with the generalized (k, s)-fractional integrals

M + 1

M − n

[
sJ σ,kρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p ≤

[
sJ σ,kρ,λ,a+;ωu

p(x)
] 1
p

+
[
sJ σ,kρ,λ,a+;ωv

q(x)
] 1
p

≤ m+ 1

m− c

[
sJ σ,kρ,λ,a+;ω (u(x)− nv(x))

p
] 1
p

.

Theorem 6. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 ≤ γ ≤ u(t) ≤ Γ, 0 ≤ ϕ ≤ v(t) ≤ Φ and ∀t ∈ [0, x] , then we have the following
inequalities associated with the generalized k-fractional integrals with respect to the
function g[

J σ,k,gρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,k,gρ,λ,a+;ωv

q(x)
] 1
p ≤ C6

[
J σ,k,gρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

where C6 = Γ(γ+Φ)+Φ(ϕ+Γ)
(γ+Φ)(ϕ+Γ) p ≥ 1 and λ, ρ > 0, ω ∈ R.

Proof. From the assumptions of 0 ≤ γ ≤ u(t) ≤ Γ and 0 ≤ ϕ ≤ v(t) ≤ Φ, we
deduce that

1

Φ
≤ 1

v(t)
≤ 1

ϕ
⇒ γ

Φ
≤ u(t)

v(t)
≤ Γ

ϕ
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which yields

vp(t) ≤
(

Φ

γ + Φ

)p
(u(t) + v(t))

p (4.15)

and

up(t) ≤
(

Γ

ϕ+ Γ

)p
(u(t) + v(t))

p
. (4.16)

Multiplying by
g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.15) and (4.16), then integrating on [a, x], we get[
J σ,k,gρ,λ,a+;ωv

q(x)
] 1
p ≤ Φ

γ + Φ

[
J σ,k,gρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

(4.17)

and [
J σ,k,gρ,λ,a+;ωu

p(x)
] 1
p ≤ Γ

ϕ+ Γ

[
J σ,k,gρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

, (4.18)

respectively. Adding the inequalities (4.17) and (4.18), we obtain the desired result.
�

Corollary 6. We assume that the conditions of Theorem 6 hold.
1) For k = 1 in Theorem 6, we have the following inequality associated with the
generalized fractional integrals with respect to the function g[

J σ,gρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,gρ,λ,a+;ωv

q(x)
] 1
p ≤ C6

[
J σ,gρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

.

2) For g(t) = t in Theorem 6, we have the following inequality associated with the
generalized k-fractional integrals[

J σ,kρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,kρ,λ,a+;ωv

q(x)
] 1
p ≤ C6

[
J σ,kρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

.

3) For g(t) = ln t in Theorem 6, we have the following inequality associated with
the generalized Hadamard k-fractional integrals[

Hσ,kρ,λ,a+;ωu
p(x)

] 1
p

+
[
Hσ,kρ,λ,a+;ωv

q(x)
] 1
p ≤ C6

[
Hσ,kρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 6, we have the following inequality
associated with the generalized (k, s)-fractional integrals[

sJ σ,kρ,λ,a+;ωu
p(x)

] 1
p

+
[
sJ σ,kρ,λ,a+;ωv

q(x)
] 1
p ≤ C6

[
sJ σ,kρ,λ,a+;ω (u+ v)

p
(x)
] 1
p

.

Theorem 7. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
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0 < m ≤ u(t)
v(t) ≤M and ∀t ∈ [0, x] , then we have the following inequalities associated

with the generalized k-fractional integrals with respect to the function g

1

M
J σ,k,gρ,λ,a+;ω (uv) (x) ≤ 1

(m+ 1)(M + 1)
J σ,k,gρ,λ,a+;ω (u+ v)

2
(x) ≤ 1

m
J σ,k,gρ,λ,a+;ω (uv) (x)

where λ, ρ > 0, ω ∈ R.

Proof. From the assumption 0 < m ≤ u(t)
v(t) ≤M, we get

(m+ 1)v(t) ≤ u(t) + v(t) ≤ (M + 1)v(t). (4.19)

Also we have,
M + 1

M
u(t) ≤ u(t) + v(t) ≤ m+ 1

m
u(t). (4.20)

From the inequalities (4.19) and (4.20), we deduce that

1

M
u(t)v(t) ≤ (u(t) + v(t))

2

(m+ 1)(M + 1)
≤ 1

m
u(t)v(t). (4.21)

Multiplying by
g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.21), then integrating on [a, x], we obtain the required result. �

Corollary 7. We assume that the conditions of Theorem 7 hold.
1) For k = 1 in Theorem 7, we have the following inequality associated with the
generalized fractional integrals with respect to the function g

1

M
J σ,gρ,λ,a+;ω (uv) (x) ≤ 1

(m+ 1)(M + 1)
J σ,gρ,λ,a+;ω (u+ v)

2
(x) ≤ 1

m
J σ,gρ,λ,a+;ω (uv) (x).

2) For g(t) = t in Theorem 7, we have the following inequality associated with the
generalized k-fractional integrals

1

M
J σ,kρ,λ,a+;ω (uv) (x) ≤ 1

(m+ 1)(M + 1)
J σ,kρ,λ,a+;ω (u+ v)

2
(x) ≤ 1

m
J σ,kρ,λ,a+;ω (uv) (x).

3) For g(t) = ln t in Theorem 7, we have the following inequality associated with
the generalized Hadamard k-fractional integrals

1

M
Hσ,kρ,λ,a+;ω (uv) (x) ≤ 1

(m+ 1)(M + 1)
Hσ,kρ,λ,a+;ω (u+ v)

2
(x) ≤ 1

m
Hσ,kρ,λ,a+;ω (uv) (x).

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 7, we have the following inequality
associated with the generalized (k, s)-fractional integrals

1

M

s

J σ,kρ,λ,a+;ω (uv) (x) ≤ 1

(m+ 1)(M + 1)

s

J σ,kρ,λ,a+;ω (u+ v)
2

(x) ≤ 1

m

s

J σ,kρ,λ,a+;ω (uv) (x).
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Theorem 8. Let u, v ∈ Xp
c (a, x) two positive functions in [0,∞), such that ∀x >

a,J σ,k,gρ,λ,a+;ωu
p(x) <∞ and J σ,k,gρ,λ,a+;ωv

p(x) <∞. Let g : [a, b]→ R be an increasing
and positive monotone function having a continuous derivative g′(x) on (a, b) . If
0 < m ≤ u(t)

v(t) ≤M and ∀t ∈ [0, x] , then we have the following inequality associated
with the generalized k-fractional integrals with respect to the function g[

J σ,k,gρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,k,gρ,λ,a+;ωv

p(x)
] 1
p ≤ 2

[
J σ,k,gρ,λ,a+;ωh

p(u(x), v(x))
] 1
p

where

h(u(x), v(x)) = max

{
M

[(
M

m
+ 1

)
u(x)−Mv(x)

]
,

(m+M)v(x)− u(x)

m

}
with p ≥ 1 and λ, ρ > 0, ω ∈ R.

Proof. From the assumption 0 < m ≤ u(t)
v(t) ≤M , we have

0 < m ≤M +m− u(t)

v(t)
(4.22)

By the inequality (4.22), we get

v(t) <
(m+M)v(x)− u(x)

m
≤ h(u(t), v(t)). (4.23)

On the other hand, we have

1

M
≤ 1

M
+

1

m
− v(t)

u(t)

which yields

u(t) ≤M
[(

M

m
+ 1

)
u(x)−Mv(x)

]
≤ h(u(t), v(t)). (4.24)

Then, using the inequalities (4.23) and (4.24), we obtain

up(t) + vp(t) ≤ 2hp(u(t), v(t)). (4.25)

Multiplying by
g′(t)

(g(x)− g(t))
1−λk
Fσ,kρ,λ [ω (g(x)− g(t))

ρ
]

both sides of (4.25), then integrating on [a, x], we obtain the desired result. �

Corollary 8. We assume that the conditions of Theorem 8 hold.
1) For k = 1 in Theorem 8, we have the following inequality associated with the
generalized fractional integrals with respect to the function g[

J σ,gρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,gρ,λ,a+;ωv

p(x)
] 1
p ≤ 2

[
J σ,gρ,λ,a+;ωh

p(u(x), v(x))
] 1
p

.
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2) For g(t) = t in Theorem 8, we have the following inequality associated with the
generalized k-fractional integrals[

J σ,kρ,λ,a+;ωu
p(x)

] 1
p

+
[
J σ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ 2

[
J σ,kρ,λ,a+;ωh

p(u(x), v(x))
] 1
p

.

3) For g(t) = ln t in Theorem 8, we have the following inequality associated with
the generalized Hadamard k-fractional integrals[

Hσ,kρ,λ,a+;ωu
p(x)

] 1
p

+
[
Hσ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ 2

[
Hσ,kρ,λ,a+;ωh

p(u(x), v(x))
] 1
p

.

4) For g(t) = ts+1

s+1 , s ∈ R − {−1} in Theorem 8, we have the following inequality
associated with the generalized (k, s)-fractional integrals[

sJ σ,kρ,λ,a+;ωu
p(x)

] 1
p

+
[
sJ σ,kρ,λ,a+;ωv

p(x)
] 1
p ≤ 2

[
sJ σ,kρ,λ,a+;ωh

p(u(x), v(x))
] 1
p

.

5. Concluding Remarks

In this research we introduced the generalization of the reverse Minkowski’s in-
equalities using generalized fractional integral operator. In order to validate that
their generalized behavior, we show the relation of our results with previously pub-
lished ones.
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