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ON THE STOCHASTIC RESTRICTED LIU-TYPE MAXIMUM
LIKELIHOOD ESTIMATOR IN LOGISTIC REGRESSION MODEL

JIBO WU AND YASIN ASAR

Abstract. In order to overcome multicollinearity, we propose a stochastic
restricted Liu-type maximum likelihood estimator by incorporating Liu-type
maximum likelihood estimator to the logistic regression model when the linear
restrictions are stochastic. We also discuss the properties of the new estima-
tor. Moreover, we give a method to choose the biasing parameter in the new
estimator. Finally, a simulation study is given to show the performance of the
new estimator.

1. Introduction

Consider the following logistic regression model

yi = πi + εi, i = 1, . . . , n, (1)

where πi = π (xi) = E [yi] = exiβ
1+exiβ , yi ∼ Bernoulli (πi) and β =

(
β0, β1, . . . , βp

)>
denotes the unknown (p+1)-vector of regression coeffi cients, X = (x1, . . . ,xn)

> is
the n × (p+ 1) data matrix with xi = (1, x1i, . . . , xpi)

> and εi’s are independent
with zero mean and their variance equal to wi = πi (1− πi).
In the estimation process of the coeffi cient vector β, one often uses the maximum

likelihood (ML) approach. One may use the iteratively re-weighted least squares
algorithm (IRLS) as follows ([6]) :

β̂
t+1

= β̂
t

+
(
X>ŴX

)−1
X>Ŵt

(
y − π̂t

)
(2)

where π̂t is the estimated values of π̂ using β̂t and Ŵt = diag
(
π̂ti
(
1− π̂ti

))
such

that π̂ti is the ith element of π̂
t. After some algebra, Equation (2) can be written

as follows:

β̂ML =
(
X>ŴX

)−1
X>Ŵẑ (3)
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where ẑ> = (z1 · · · zn) with ηi = x′iβ and zi = ηi + (yi − πi)(∂ηi/∂πi).
As it is well known that when multicollinearity exists in the explanatory vari-

ables, the MLE becomes unstable and its variance is inflated. Many methods have
been proposed to overcome this problem. We refer to the following papers: [8], [11],
[14], [1]. In this article, we also suppose that β is subjected to lie in the sub-space
restriction Hβ = h, where H is q × (p+ 1) known matrix and h is a q × 1 vector
of pre-specified values. This problem was also studied in [7], [6], [15], [16].
For the stochastic linear restrictions, [16], [17] and [18] discussed the logistic

regression model. In this paper, we will discuss the logistic regression model with
stochastic linear restrictions. By combining the Liu-type maximum likelihood es-
timator ([11]) and stochastic linear restrictions, we propose a new estimator called
stochastic restricted Liu-type maximum likelihood estimator to overcome multi-
collinearity. We also discuss the properties of the new estimator and we show
that the new estimator can not only overcome multcollineariy, but also has good
properties than other exists estimators.
The rest of the paper is organized as follows, in Section 2, the new estimator

is proposed and the properties of the new estimator is discussed in Section 3. A
method is given to choose the biasing parameters in Section 4 and we also conduct
a simulation study to show the performance of the new estimator in Section 5, some
conclusive remarks are given in Section 6.

2. The new estimator

For the model (1), [8] proposed a Liu maximum likelihood estimator (LE) to over-
come the multicollinearity, which is defined as

β̂LE(d) =
(
X>ŴX + I

)−1 (
X>Ŵẑ + dβ̂MLE

)
= Fdβ̂MLE (4)

where Fd =
(
X>ŴX + I

)−1 (
X>ŴX + dI

)
, 0 < d < 1.

[11] proposed a Liu-type maximum likelihood estimator (LTE), which is defined
as

β̂LTE(k, d) =
(
X>ŴX + kI

)−1 (
X>Ŵẑ− dβ̂MLE

)
= Fkdβ̂MLE (5)

where Fkd =
(
X>ŴX + kI

)−1 (
X>ŴX− dI

)
, k > 0,−∞ < d < +∞.

Assume that the following general stochastic linear restrictions is given in addi-
tion to the general logistic regression model

h = Hβ + v, E (v) = 0, Cov (v) = Ψ (6)

whereH is q× (p+ 1) known matrix and h is a q×1 vector of pre-specified values.
v is an random vector. We assumed that v is independent of ε.
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By combining (1) and (6), [16] proposed the following stochastic restricted max-
imum likelihood estimator (SRE) as follows:

β̂SRE =
(
C +H>Ψ−1H

)−1 (
X>Ŵẑ +H>Ψ−1h

)
. (7)

[18] proposed the stochastic restricted Liu maximum likelihood estimator (SRLE),
by combining the LE and SRE, as

β̂SRLE (d) = Fd

(
C +H>Ψ−1H

)−1 (
X>Ŵẑ +H>Ψ−1h

)
= Fdβ̂SRE . (8)

Now incorporating the LTE to the logistic regression model under the stochastic
linear restriction, we propose a new biased estimator which is called stochastic
restricted Liu-type maximum likelihood estimator (SRLTE)

β̂SRLTE (k, d) = Fkd

(
X>ŴX +H>Ψ−1H

)−1 (
X>Ŵẑ +H>Ψh

)
= Fkdβ̂SRE

(9)

where Fkd =
(
X>ŴX + kI

)−1 (
X>ŴX− dI

)
, k > 0,−∞ < d < +∞ are two

biasing parameters. By the definition of SRLTE, we can see that it is a general
estimator which includes the MLE, LE, LTE, SRE and SRLE as special cases.

• When k = −d,

β̂SRLTE (k, d) = β̂SRE =
(
X>ŴX +H>Ψ−1H

)−1 (
X>Ŵẑ +H>Ψ−1h

)
,

• When k = 1, d = −d,

β̂SRLTE (k, d) = β̂SRLE = Fd

(
X>ŴX +H>Ψ−1H

)−1 (
X>Ŵẑ +H>Ψ−1h

)
,

• When H = 0, β̂SRLTE (k, d) = β̂LTE = Fkdβ̂MLE ,
• When H = 0, k = −d, β̂SRLTE (k, d) = β̂MLE ,
• When H = 0, k = 1, d = −d, β̂SRLTE (k, d) = β̂LE = Fdβ̂MLE .

In next section, we will study the performance of the new estimator over the
existing estimator given in the literature.

3. The properties of the new estimator

In this section, we will present the comparison of the new estimator with other
estimators under the mean squared error matrix criteria. Firstly, we present the
definition of mean squared error matrix. The mean squared error matrix (MSEM)
of estimator β̃ is defined as

MSEM(β̃) = E

[(
β̃ − β

)(
β̃ − β

)>]
= Cov

(
β̃
)

+Bias
(
β̃
)
Bias

(
β̃
)>

.
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where Cov
(
β̃
)
is the covariance matrix and Bias

(
β̃
)
is the bias of the estimator

β̃. The scalar mean squared error (SMSE) is defined as follows:

SMSE
(
β̃
)

= tr
[
MSEM

(
β̃
)]

where tr is the trace of a matrix. Now, we will present three lemmas and use them
to prove the theorems given in the next section.

Lemma 1. ([3], [12]) Suppose that M be a positive definite matrix, namely M > 0,
α be some vector, then M−αα> ≥ 0 if and only if α>M−1α ≤ 1.

Lemma 2. ([12]) Let M > 0, N > 0, then M > N, if and only if λmax
(
NM−1) <

1.

Lemma 3. ([12]) Let β̂j = Ajy, j = 1, 2 be two competing estimator of β. Assume

that ∆ = Cov
(
β̂1

)
− Cov

(
β̂2

)
> 0, then MSEM

(
β̂1

)
−MSEM

(
β̂2

)
> 0 if

and only if u>2
(
∆ + u1u

>
1

)−1
u2 ≤ 1, where uj denotes the bias of β̂j.

3.1. The new estimator versus SRE. The asymptotic properties of the SRE
are given as follows: The expected value and the covariance matrix are respectively
given by

E
[
β̂SRE

]
= β and,Cov

[
β̂SRE

]
=
(
X>ŴX +H>Ψ−1H

)−1
. (10)

Then we may have the MSEM of SRE as

MSEM
[
β̂SRE

]
=
(
X>ŴX +H>Ψ−1H

)−1
. (11)

The asymptotic properties of the new estimator SRLTE are obtained similarly as
follows:

E
[
β̂SRLTE (k, d)

]
= Fkdβ =

(
X>ŴX + kI

)−1 (
X>ŴX− dI

)
β (12)

and

Cov
[
β̂SRLTE (k, d)

]
= Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd. (13)

Then MSEM of SRLTE is given by

MSEM
[
β̂SRLTE (k, d)

]
= Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd + b1b

′
1 (14)

where b1 = −(d+ k)
(
X>ŴX + kI

)−1
β.

Now we consider the following difference

∆1 = MSEM
[
β̂SRE

]
−MSEM

[
β̂SRLTE (k, d)

]
=

(
X>ŴX +H>Ψ−1H

)−1
− Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd − b1b

>
1

= D1 − b1b
>
1 (15)
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where D1 =
(
X>ŴX +H>Ψ−1H

)−1
− Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd.

Since
(
X>ŴX +H>Ψ−1H

)−1
> 0, Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd > 0,

then by Lemma 2, when

λmax

{
Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd

(
X>ŴX +H>Ψ−1H

)}
< 1,

D1 > 0. Then by Lemma 1, when b>1 D−11 b1 ≤ 1, ∆1 ≥ 0.
Based on the arguments above, we may have the following theorem:

Theorem 4. When

λmax

{
Fkd

(
X>ŴX +H>Ψ−1H

)−1
F>kd

(
X>ŴX +H>Ψ−1H

)}
< 1,

the new estimator is superior to the SRE if and only if b>1 D−11 b1 ≤ 1.

3.2. The new estimator versus SRLE. The asymptotic properties of the SRLE
are obtained as follows:

E
[
β̂SRLE (d)

]
= Fdβ =

(
X>ŴX + I

)−1 (
X>ŴX + dI

)
β (16)

and

Cov
[
β̂SRLE (d)

]
= Fd

(
X>ŴX +H>ΨH

)−1
F>d . (17)

Then we have MSEM of SRLE as

MSEM
[
β̂SRLE (d)

]
= Fd

(
X>ŴX +H>ΨH

)−1
F>d + b2b

>
2 (18)

where b2 = (d− 1)
(
X>ŴX + I

)−1
β.

Now we consider the following difference

∆2 = MSEM
[
β̂SRLE

]
−MSEM

[
β̂SRLTE (k, d)

]
= Fd

(
X>ŴX +H>ΨH

)−1
F>d − Fkd

(
X>ŴX +H>ΨH

)−1
F>kd

+b2b
>
2 − b1b

>
1

= D2 + b2b
>
2 − b1b

>
1 (19)

where D2 = Fd

(
X>ŴX +H>ΨH

)−1
F>d − Fkd

(
X>ŴX +H>ΨH

)−1
F>kd.

Since Fd

(
X>ŴX +H>ΨH

)−1
F>d > 0 and Fkd

(
X>ŴX +H>ΨH

)−1
F>kd >

0, then by Lemma 2, when

λmax

{
Fkd

(
X>ŴX +H>ΨH

)−1
F>kd

[
Fd

(
X>ŴX +H>ΨH

)−1
F>d

]−1}
< 1,
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D2 > 0. Thus by Lemma 3, when b>1
(
D2 + b2b

>
2

)−1
b1 ≤ 1, ∆2 ≥ 0.

Based on the computations above, we may write the following theorem:

Theorem 5. When

λmax

{
Fkd

(
X>ŴX +H>ΨH

)−1
F>kd

[
Fd

(
X>ŴX +H>ΨH

)−1
F>d

]−1}
< 1,

the new estimator is superior to the SRLE if and only if b>1
(
D2 + b2b

>
2

)−1
b1 ≤ 1.

3.3. The new estimator versus LTE. The asymptotic properties of the LTE
are given by

E
[
β̂LTE (k, d)

]
= Fkdβ =

(
X>ŴX + kI

)−1 (
X>ŴX− dI

)
β (20)

and

Cov
[
β̂LTE (k, d)

]
= Fkd

(
X>ŴX

)−1
F>kd (21)

Then we have

MSEM
[
β̂LTE (k, d)

]
= Fkd

(
X>ŴX

)−1
F>kd + b1b

>
1 (22)

where b1 = −(d+k)
(
X>ŴX + kI

)−1
β. Thus, the following difference is obtained

∆3 = MSEM
[
β̂LTE

]
−MSEM

[
β̂SRLTE (k, d)

]
= Fkd

(
X>ŴX

)−1
F>kd − Fkd

(
X>ŴX +H>ΨH

)−1
F>kd

= Fkd

[(
X>ŴX

)−1
−
(
X>ŴX +H>ΨH

)−1]
F>kd. (23)

By [12], the following identity holds:(
X>ŴX +H>ΨH

)−1
=

(
X>ŴX

)−1
−
(
X>ŴX

)−1
×H>

[
H
(
X>ŴX

)−1
H>

]−1
H
(
X>ŴX

)−1
.

Then (
X>ŴX

)−1
H>

(
H
(
X>ŴX

)−1
H

)−1
H
(
X>ŴX

)−1
=
(
X>ŴX

)−1
−
(
X>ŴX +H>ΨH

)−1
≥ 0.

So ∆3 = MSEM
[
β̂LTE

]
−MSEM

[
β̂SRLTE (k, d)

]
≥ 0.

Therefore, we may present the following theorem:

Theorem 6. The new estimator is always superior to the LTE.



THE STOCHASTIC RESTRICTED LIU-TYPE MAXIMUM LIKELIHOOD ESTIMATOR 649

3.4. The new estimator versus LE. The asymptotic properties of the LE are
given as:

E
[
β̂LE (d)

]
= Fdβ =

(
X>ŴX + I

)−1 (
X>ŴX + dI

)
β (24)

and

Cov
[
β̂LE (d)

]
= Fd

(
X>ŴX

)−1
F>d . (25)

Then we have

MSEM
[
β̂LE (d)

]
= Fd

(
X>ŴX

)−1
F>d + b2b

>
2 (26)

where b2 = (d− 1)
(
X>ŴX + I

)−1
β.

Now using (26) and (14) we consider the following difference

∆4 = MSEM
[
β̂LE

]
−MSEM

[
β̂SRLTE (k, d)

]
= Fd

(
X>ŴX

)−1
F>d − Fkd

(
X>ŴX +H>ΨH

)−1
F>kd + b2b

>
2 − b1b

>
1

= D3 − b1b
>
1 . (27)

where D3 = Fd

(
X>ŴX

)−1
F>d − Fkd

(
X>ŴX +H>ΨH

)−1
F>kd.

Since Fd

(
X>ŴX

)−1
F>d > 0 and Fkd

(
X>ŴX +H>ΨH

)−1
F>kd > 0, then

by Lemma 2, when

λmax

{
Fkd

(
X>ŴX +H>ΨH

)−1
F>kd

[
Fd

(
X>ŴX

)−1
F>d

]−1}
< 1,

D3 > 0. Thus by Lemma 3, when b>1
(
D3 + b2b

>
2

)−1
b1 ≤ 1, ∆4 ≥ 0.

As a result, we can write the following theorem:

Theorem 7. When

λmax

{
Fkd

(
X>ŴX +H>ΨH

)−1
F>kd

[
Fd

(
X>ŴX

)−1
F>d

]−1}
< 1,

the new estimator is superior to the LE if and only if b>1
(
D3 + b2b

>
2

)−1
b1 ≤ 1.

3.5. Selection of the parameters k and d. We propose an algorithm to choose
the biasing parameters k and d iteratively to use in SRLTE. Since X>ŴX > 0,
using the spectral decomposition of the matrix X>ŴX = QΛQ>, where Q is the
matrix whose columns are the eigenvectors of X>ŴX and Λ = diag (λ1, ..., λp+1)
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such that λi’s are eigenvalues of X>ŴX, then we have

SMSE
[
β̂SRLTE (k, d)

]
=

p+1∑
i=1

(λi − d)
2
bii + (d+ k)

2
α2i

(λi + k)
2 (28)

where
(
X>ŴX +H>ΨH

)−1
= Qdiag

(
b11, ..., b(p+1)(p+1)

)
Q> and α̂ = Q>β̂MLE .

To estimate k, we start by taking the derivative of Equation (28) with respect
to k and equating the resulting function to zero then solving for each individual
parameter, we obtain the following:

k =
(λi − d)bii − d

α2i
. (29)

Since k is positive by definition, the numerator of Equation (29) gives us an estimate
of d as

λibii
bii + 1

≥ d (30)

Thus, we propose the following algorithm:

(1) Find an initial estimate of d using (30) by choosing the minimum of those
values.

(2) Compute the individual k values using (29) and compute their minimum
as an estimate of k.

4. A simulation study

In this section we present the details of a Monte Carlo simulation study which
is conducted to evaluate the performances of the estimators MLE, LE, LTE, SRE,
SRLE and SRLTE. We consider two criteria which are the simulated mean squared
error (MSE) and predictive MSE (PMSE) to compare the performances of listed
estimators. Following [10], and [18], we generate the data matrix X containing the
explanatory variables such that ρ2 is the degree of collinearity between any two
variables as follows:

xij = (1− ρ2)1/2wij + ρwi(p+1) (31)

where wij are obtained from the standard normal distribution. The data matrix is
centered and standardized before computations.
We consider the following setting:

• The sample size is taken as 50, 100 and 200.
• The number of explanatory variables is p = 4.
• The parameter values as chosen such that β>β = 1.
• The degree of correlation ρ changes as 0.9, 0.99 and 0.999.
• The dependent variable is generated using πi = exiβ

1+exiβ
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• The restrictions are chosen as follows: Following [18], we choose H = 1 −1 0 0
0 1 −1 0
0 0 1 −1

 and h = Hβ + v where v ∼ N (0,Ψ) such that

Ψ = I3.
• We choose the biasing parameter of LE and SRLE following [8]. For LTE,
we follow [2] to choose k and d. For SRLTE, we use our proposed algorithm
to estimate the parameters.

Table 1. The simulated MSE values

n MLE LE LTE SRMLE SRLE SRLTE
ρ = 0.9

50 1.85652 1.36613 1.12453 0.51381 0.66333 0.58042
100 1.78156 1.34392 1.10278 0.58567 0.74037 0.67935
200 1.75873 1.50912 1.16144 0.86342 0.89278 0.91667

ρ = 0.99
50 2.60743 1.03528 1.20035 0.72942 0.93741 0.71122
100 2.18982 1.05415 1.13695 0.67586 0.90969 0.65671
200 1.89717 1.11810 1.08619 0.60522 0.82612 0.58546

ρ = 0.999
50 17.24458 1.00220 3.61286 0.82232 0.99678 0.82139
100 5.79611 1.00791 1.78444 0.81379 0.98176 0.80758
200 3.41868 1.01677 1.36106 0.77453 0.96657 0.76399

Table 2. The simulated PMSE values

n MLE LE LTE SRMLE SRLE SRLTE
ρ = 0.9

50 2.66301 2.42390 2.49373 2.35958 2.33175 2.34593
100 4.80013 4.58821 4.65525 4.56813 4.54326 4.55901
200 9.63524 9.22454 9.45762 9.13080 9.11585 9.12089

ρ = 0.99
50 2.32046 2.25402 2.20685 2.22910 2.19648 2.22816
100 4.49735 4.42789 4.38679 4.41898 4.37117 4.41659
200 8.87562 8.78514 8.76574 8.80102 8.73969 8.79209

ρ = 0.999
50 2.30213 2.25291 2.18845 2.19244 2.18757 2.19244
100 4.47697 4.41158 4.36401 4.36879 4.36197 4.36873
200 8.81881 8.76106 8.70836 8.72060 8.70271 8.72036
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The simulation is repeated 5000 times. All computations are performed using
the R program ([13]). The simulated MSE and PMSE values of estimators are
computed respectively as follows:

MSE(β̃) =

∑5000
r=1 (β̃r − β)>(β̃r − β)

5000

and

PMSE(β̃) =

∑5000
r=1 (π̃r − π)>(π̃r − π)

5000

where β̃r is any estimator considered in the study and π̃r is the predicted proba-
bilities in the rth repetition.
The results of the simulation are presented in Tables 1-4. According to the

results, we observe that SRLTE has the best performance in the sense of MSE for
most of the situations and MLE has the worst performance in the sense of both
MSE and PMSE. When ρ = 0.9, SRE has the best performance, however, SRLTE
becomes the second best estimator. It was expected that SRLE would have a better
performance than SRE, but it is not. This may be the result of the selection of the
biasing parameter.
Although, MSE of LTE is lower than MSE of LE and MLE when the correlation

is low, LE has a better performance than LTE when the correlation is high.
It is also seen from tables that increasing the degree of correlation makes an

increase in the MSE values of the estimators except for LTE and LE. However,
if we consider PMSE values, this situation is vice versa, namely, if the degree of
correlation increases, PMSE values decrease. According to Table 2, it is observed
that SRLE has the best predictive performance. SRLTE is the second best estimator
in the sense of PMSE.
Moreover, if we consider MSE as a function of the sample size, we conclude that

all the estimators have asymptotic properties for most of the cases, in other words,
if the sample size increases, MSE values decrease. On the other hand the PMSE
values increase for the same situation.

5. Conclusion

In this paper, we propose a new stochastic restricted estimator SRLTE and study
its performance both theoretically and numerically. We obtain some conditions
such that SRLTE is superior to SRE, SRLE, LTE and LE using mean square
error matrices of estimators. We also propose an algorithm to choose the biasing
parameters of SRLTE. Moreover, we conduct a Monte Carlo simulation experiment
to compare the performances of estimators numerically. We used both MSE and
predictive MSE as comparison criteria. According to the results of the simulation,
SRLTE performs better in most of the situations in the sense of MSE.
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