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ON ANDERSSON’S INEQUALITY FOR HYPERBOLICALLY
CONVEX FUNCTIONS

NASHAT FARIED, MOHAMED S. S. ALI, AND ZEINAB M. YEHIA

Abstract. In this paper, we use Andersson’s Inequality for ordinary con-
vex functions to prove a similar inequalities concerning hyperbolically convex
functions.

1. Introduction

One of the powerful properties of functions, which play a very important role
in many areas of mathematics both pure and applied, is convexity. An arbitrary
function f defined on an interval I is said to be convex if each point on the chord
between (u, f(u)) and (v, f(v)) is above the graph of f for any u, v ∈ I. In fact,
there are families of real functions {F (x)} which are not topologically equivalent
to the family {L(x)} of all non vertical line segments terminating on x = u and
x = v. So that, there are many activities concerning to generalize the notion of
a convex function to other classes of functions. But many properties of convex
functions are satisfied for these general functions. Generalized convex functions
were first defined and systematically investigated by Beckenbach [1] and studied
furthermore by Beckenbach and Bing [2]. More generally, let {F (x)} be a family of
real functions F (x) defined in an interval I, such that for given points p1 : (u1, v1)
and p2 : (u2, v2), u1, u2 ∈ I with u1 < u2, there is a unique member of {F (x)}
through p1 and p2. Functions f(x) dominated by {F (x)} are said to be convex
relative to {F (x)}. In this work, we concern with one of these generalizations in
the sense of Beckenbach by replacing the family of linear functions with a family of
hyperbolic functions,

H(x) = A cosh px+B sinh px,

where A, B arbitrary constants and p is a fixed positive constant.
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2. Definitions and Preliminary Results

In this section, we introduce the basic definitions and results which will be used
later. For more informations see [3, 4, 5, 6].

Definition 1. A function f : I → R is said to be sub H-function on I or hyperbol-
ically convex function, if for any arbitrary closed subinterval [u, v] of I the graph of
f(x) for x ∈ [u, v] lies nowhere above the function, determined by the equation:
H(x) = H(x, u, v, f) = A cosh px+B sinh px; p > 0
where A and B are chosen such that H(u) = f(u), and H(v) = f(v).
Equivalently, for all x ∈ [u, v]

f(x) ≤ H(x) =
f(u) sinh p(v − x) + f(v) sinh p(x− u)

sinh p(v − u)
. (1)

Remark 2. The hyperbolically convex functions possess a number of properties
analogous to those of convex functions.
For example: If f : I → R is Hyperbolically convex function, then for any u, v ∈ I,
the inequality f(x) ≥ H(x) holds outside the interval [u, v].

Definition 3. Let f : I → R be a hyperbolically convex function.
A function Su(x) = A cosh px+B sinh px, is said to be supporting function for f(x)
at the point u ∈ I if:

(1) Su(u) = f(u),
(2) Su(x) ≤ f(x) ∀x ∈ I.
That is, if f(x) and Su(x) agree at x = u, the graph of f(x) does not lie under

the support curve.

Definition 4. The hypergeometric function 1F2(a; b, c;x) is defined as

1F2(a; b, c;x) =

∞∑
n=0

(a)n
n!(b)n(c)n

xn

where,
(a)n = a(a+ 1)...(a+ n− 1).

Theorem 5. A function f : I → R is hyperbolically convex function on I if and
only if there exists a supporting function for f(x) at each point x in I.

Proposition 6. If f : I → R is a differentiable hyperbolically convex function, then
the supporting function for f(x) at the point u ∈ I has the form

Su(x) = f(u) cosh p(x− u) +
f ′(u)

p
sinh p(x− u).

Theorem 7. A function f : I → R is convex if and only if there is an increasing
function g : (a, b)→ R and a point c ∈ (a, b) such that for all x ∈ (a, b),

f(x)− f(c) =

∫ x

c

g(t)dt.
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Theorem 8. If f : (a, b) → R and g : (a, b) → R are both non-negative, in-
creasing(decreasing), and convex, then h(x) = f(x)g(x) also preserve these three
properties.

Theorem 9. If f : I → R is differentiable function, then f is convex if and only
if f ′ is increasing.

Theorem 10. (Andersson’s inequality) Let F1(x), F2(x), ..., Fn(x) be convex
functions, defined in 0 ≤ x ≤ 1, and for which

Fp(x) ≥ 0, Fp(0) = 0, p = 1, 2, ..., n.

If

∫ 1

0

Fp(x)dx = αp, then∫ 1

0

F1(x)F2(x)...Fn(x)dx ≥ 2n

n+ 1
α1α2...αn.

3. Main Results

In this section, we derive a similar results to Andersson’s inequality for hyperbol-
ically convex functions through three theorems the fundamental difference between
them depends on the different intervals of integration and the conditions imposed
on the convex functions.

Theorem 11. Let k1(x), k2(x), ..., kn(x) be convex functions, defined in 0 ≤ x ≤ 1,
for which

kr(x) ≥ 0, kr(0) = 0, r = 1, 2, ..., n,

and let f(x) be differentiable hyperbolically convex function defined on [0, 1] ⊆ R,
such that: f(0) ≥ 0, f ′(0) = 0 and∫ 1

0

kr(x)dx = αr,

then, ∫ 1

0

f(x)

n∏
r=1

kr(x)dx ≥ 2nf(0)

n+ 1

n∏
r=1

αr.

Proof. As f(x) is hyperbolically convex function, then from Definition 3, it follows
that:

f(x) ≥ S0(x) ∀x ∈ [0, 1].

Since f(x) is differentiable and f ′(0) = 0, then from Proposition 6, the supporting
function S0(x) for f(x) at the point 0 ∈ [0, 1] can be written in the form

S0(x) = f(0) cosh px.

Consequently,
f(x) ≥ f(0) cosh px ∀x ∈ [0, 1]. (2)
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As
∏n
r=1 kr(x) ≥ 0, by using 2, one has:

f(x)

n∏
r=1

kr(x) ≥ f(0) cosh px

n∏
r=1

kr(x).

As cosh px ≥ 1, then

f(x)

n∏
r=1

kr(x) ≥ f(0)

n∏
r=1

kr(x),

∫ 1

0

f(x)

n∏
r=1

kr(x)dx ≥ f(0)

∫ 1

0

n∏
r=1

kr(x)dx.

Now by using Theorem 10, we get∫ 1

0

f(x)

n∏
r=1

kr(x)dx ≥ 2nf(0)

n+ 1

n∏
r=1

αr.

Hence, the claim. �

Theorem 12. Let k1(x), k2(x), ..., kn(x) be convex functions, defined in 0 ≤ x ≤
1
p sinh−1(1), for which

kr(x) ≥ 0, kr(0) = 0, k′r(x) ≤ 0, r = 1, 2, ..., n,

and let f(x) be differentiable hyperbolically convex function defined on [0, 1
p sinh−1(1)] ⊆

R, such that: f(0) ≥ 0, f ′(0) = 0 and∫ 1
p sinh−1(1)

0

kr(x) cosh pxdx = αr,

then, ∫ 1
p sinh−1(1)

0

f(x)

n∏
r=1

kr(x)dx ≥ 2nf(0)pn−1

(n+ 1)

n∏
r=1

αr.

Proof. As f(x) is hyperbolically convex function, from Definition 3, we get:

f(x) ≥ S0(x) ∀x ∈ [0,
1

p
sinh−1(1)].

Since f(x) is differentiable and f ′(0) = 0, then from Proposition 6, the supporting
function S0(x) for f(x) at the point 0 ∈ [0, 1

p sinh−1(1)] can be written in the form

S0(x) = f(0) cosh px.

Consequently,

f(x) ≥ f(0) cosh px ∀x ∈ [0,
1

p
sinh−1(1)]. (3)
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As
∏n
r=1 kr(x) ≥ 0, by using 3, one has:∫ 1

p sinh−1(1)

0

f(x)

n∏
r=1

kr(x)dx ≥ f(0)

∫ 1
p sinh−1(1)

0

n∏
r=1

kr(x) cosh pxdx. (4)

Using the following substitution

t = sinh px, (5)

and let

hr(t) = kr(x), (6)

then it follows that:∫ 1
p sinh−1(1)

0

kr(x) cosh pxdx =
1

p

∫ 1

0

hr(t)dt = αr,

hr(0) = 0, hr(t) ≥ 0 ∀t ∈ [0, 1],

and we will use the following notations,

k′r(x) =
d

dx
[kr(x)], k′′r (x) =

d2

dx2
[kr(x)],

ḣr(t) =
d

dt
[hr(t)], ḧr(t) =

d2

dt2
[hr(t)].

Hence,

k′r(x) = ḣr(t)p cosh px, (7)

k′′r (x) = ḧr(t)p
2 cosh2 px+ ḣr(t)p

2 sinh px,

ḧr(t) =
1

p2 cosh2 px
[k′′r (x)− ḣr(t)p2 sinh px].

From 7, then

ḧr(t) =
1

p2 cosh2 px
[k′′r (x)− pk′r(x) tanh px].

Since,

k′r(x) ≤ 0.

Then k′′r (x) − pk′r(x) tanh px ≥ 0. It follows that ḧr(t) ≥ 0. Hence ḣr(t) is an
increasing function in [0, 1]. Using Theorem 9, one obtains that hr(t) is a convex
function in [0, 1].
Then hr(t), r = 1, 2, ..., n satisfy all assumptions of Theorem 10 in the interval [0, 1].
Hence, ∫ 1

0

n∏
r=1

hr(t)dt ≥
2npn

n+ 1

n∏
r=1

αr. (8)
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Now using 5, 6 and 8, then 4 turns out to:∫ 1
p sinh−1(1)

0

f(x)

n∏
r=1

kr(x)dx ≥ f(0)

p

∫ 1

0

n∏
r=1

hr(t)dt

≥ 2nf(0)pn−1

(n+ 1)

n∏
r=1

αr.

Hence, the claim. �

Theorem 13. Let k1(x), k2(x), ..., kn(x) be convex functions, defined in 0 ≤ x ≤
π
2p , for which

kr(x) ≥ 0, kr(0) = 0, r = 1, 2, ..., n,

and let f(x) be differentiable hyperbolically convex function defined on [0, Π
2p ] ⊆ R,

such that: f(0) ≥ 0, f ′(0) = 0 and∫ π
2p

0

kr(x)dx = αr.

then, one has the following sharp inequality:∫ π
2p

0

f(x)

n∏
r=1

kr(x)dx ≥ 22n−1

n+ 1
f(0)(

p

π
)n−1(

n∏
r=1

αr)1F2(
1

2
+
n

2
;

1

2
,

3

2
+
n

2
;
π2

16
). (9)

Proof. We have four steps in this proof. LetM denote the class of convex functions
of the theorem.
Step 1. If k ∈ M , then k is increasing. Since k(x) is convex in [0, π2p ] and

k(0) = 0, then from Theorem 7 there is an increasing function h : [0, π2p ]→ R, such
that

k(x) =

∫ x

0

h(t)dt, x ∈ [0,
π

2p
]. (10)

Now, suppose that h(t0) < 0 for some t0 ∈ [0, π2p ]. As h is increasing, then h(t) < 0

for all t ∈ [0, t0], therefore,
∫ x

0
h(t)dt < 0, x ∈ [0, t0]. From 10 it follows, k(x) < 0,

x ∈ [0, π2p ], which contradicts the fact that k(x) ≥ 0, x ∈ [0, π2p ]. Thus, h(t) ≥ 0 for
all t ∈ [0, π2p ].
Now, let x1, x2 ∈ [0, π2p ], if x1 ≤ x2, then using 10, one has:

0 ≤
∫ x2

x1

h(t)dt =

∫ x2

0

h(t)dt−
∫ x1

0

h(t)dt = k(x2)− k(x1).

Hence, k(x) is an increasing function.
For the next steps, let

k∗r (x) =
2αrx

( π2p )2
, 0 ≤ x ≤ π

2p
, (11)
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and

φr(x) =

∫ x

0

[k∗r (s)− kr(s)]ds. (12)

Step 2. M is closed under multiplication. From 11, it follows that: k∗r is non-
negative, increasing, and convex function satisfies k∗r (0) = 0. Thus, k∗r ∈ M ,
r = 1, 2, ..., n. Hence, from Theorem 8, M is closed under multiplication.
Step 3. Φr(x) ≥ 0, x ∈ [0, Π

2p ]. Using 11 and 12, one concludes that∫ π
2p

0

k∗r (x)dx =

∫ π
2p

0

kr(x)dx = αr, (13)

Φr(0) = 0, and Φr(
π

2p
) = 0. (14)

From the convexity of kr(x), it follows that the graph of kr(x) must intersect the
straight line of k∗r (x) in a unique point q as shown in figure 1. If x lies in [0, b], then
obviously from 12 it follows that

Φr(x) ≥ 0, 0 ≤ x ≤ b.
Otherwise, if b ≤ x ≤ π

2p , one has:∫ π
2p

x

kr(s)ds ≥
∫ π

2p

x

k∗r (s)ds.

Using 13, one obtains:∫ π
2p

0

k∗r (s)ds−
∫ π

2p

x

k∗r (s)ds ≥
∫ π

2p

0

kr(s)ds−
∫ π

2p

x

kr(s)ds∫ x

0

[k∗r (s)ds− kr(s)]ds ≥ 0.

Thus, Φr(x) ≥ 0, b ≤ x ≤ π
2p . Hence, Φr(x) ≥ 0, x ∈ [0, π2p ].

As f(x) is differentiable hyperbolically convex function and f ′(0) = 0, according
to Proposition 6, for convenience, we denote

f∗(x) = f(0) cosh px, (15)

as the supporting function for f(x) at the point 0 ∈ [0, π2p ]. But, from Definition 3,
one obtains:

f(x) ≥ f∗(x), x ∈ [0,
π

2p
], (16)

hence we can go to: Step 4. We show that if G1(x), G2(x) ∈M , then∫ π
2p

0

G1(x)G2(x)f(x)dx ≥
∫ π

2p

0

G∗1(x)G2(x)f∗(x)dx. (17)

From Step 2, we observe:

G1(x)G2(x) ≥ 0, x ∈ [0,
π

2p
].
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Using 16, one has∫ π
2p

0

G1(x)G2(x)f(x)dx ≥
∫ π

2p

0

G1(x)G2(x)f∗(x)dx. (18)

Let

S1(x) = G2(x)f∗(x). (19)

Using 12 and 14, it follows that∫ π
2p

0

G1(x)S1(x)dx =

∫ π
2p

0

S1(x)[G∗1 − (G∗1 −G1)]dx

=

∫ π
2p

0

S1(x)G∗1(x)dx−
∫ π

2p

0

S1(x)dΦ1(x)

=

∫ π
2p

0

G∗1(x)S1(x)dx+

∫ π
2p

0

Φ1(x)dS1(x).

Since dS1 ≥ 0, and from Step 3, we infer that∫ π
2p

0

Φ1(x)dS1(x) ≥ 0.

Thus ∫ π
2p

0

G1(x)S1(x)dx ≥
∫ π

2p

0

G∗1(x)S1(x)dx. (20)

Hence, from 18, 19 and 20, we get the required inequality 17.
Now, we prove the main inequality 9. From step 2, we have

kn(x), k1(x)k2(x)...kn−1(x) ∈M.



536 NASHAT FARIED, MOHAMED S. S. ALI, AND ZEINAB M. YEHIA

Thus, using 17, one has∫ π
2p

0

k1(x)...kn−1(x)kn(x)f(x)dx ≥
∫ π

2p

0

k1(x)...kn−1(x)k∗n(x)f∗(x)dx.

Again, kn−1(x), k1(x)...kn−2(x)k∗n(x) ∈M . Hence, from 20 it follow that∫ π
2p

0

k1(x)...kn−1(x)k∗n(x)f∗(x)dx ≥
∫ π

2p

0

k1(x)...k∗n−1(x)k∗n(x)f∗(x)dx

Repeating the above argument and using 20 each time, then from 11 and 15 one
obtains: ∫ π

2p

0

k1(x)...kn(x)f(x)dx ≥
∫ π

2p

0

k∗1(x)...k∗n(x)f∗(x)dx

=
2nf(0)

( π2p )2n
(
n∏
r=1

αr)

∫ π
2p

0

xn cosh pxdx.

Using the following substitution
z = px,

we get∫ π
2p

0

f(x)

n∏
r=1

kr(x)dx ≥ 2n(
2p

π
)2nf(0)(

n∏
r=1

αr)
1

pn+1

∫ π
2

0

zn cosh zdz

=
2n

n+ 1
f(0)(

2p

π
)2n(

n∏
r=1

αr)(
π

2
)1+n

1F2(
1

2
+
n

2
;

1

2
,

3

2
+
n

2
;
π2

16
)

=
22n−1

n+ 1
f(0)(

p

π
)n−1(

n∏
r=1

αr)1F2(
1

2
+
n

2
;

1

2
,

3

2
+
n

2
;
π2

16
),

and the theorem is proved. We obtain equality if

f(x) = f(0) cosh px, kr(x) =
2αrx

( π2p )2
, r = 1, 2, ..., n.

�
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