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BINOMIAL-DISCRETE LINDLEY DISTRIBUTION

C. KUŞ, Y. AKDOĞAN, A. ASGHARZADEH, İ. KINACI, AND K. KARAKAYA

Abstract. In this paper, a new discrete distribution called Binomial-Discrete
Lindley (BDL) distribution is proposed by compounding the binomial and dis-
crete Lindley distributions. Some properties of the distribution are discussed
including the moment generating function, moments and hazard rate function.
The estimation of distribution parameter is studied by methods of moments,
proportions and maximum likelihood. A simulation study is performed to
compare the performance of the different estimates in terms of bias and mean
square errors. Automobile claim data applications are also presented to see
that the new distribution is useful in modelling data.

1. Introduction

Sometimes in life testing experiments, the life length of a device can not be
measured on a continuous scale and the reliability (survival) function is assumed
to be a function of a count (discrete) random variable instead of being a function
of continuous time random variable. For example, the reliability of a computer
is a function of the number of break down of the computer or the reliability of a
switching device is a function of the number of times the switch is operated. On the
other hand in some cases, if the life length can be measured on a continuous scale,
the measurements cannot be recorded with desired sensitivity. In such situations, it
is reasonable to consider the observations as coming from a discretized distribution
generated from the underlying continuous model. Therefore, discrete distributions
are quite meaningful to model life time data in such situations[1], [2].
Recently, many discrete lifetime distributions have been proposed in the statisti-

cal literature by discretizing the continuous lifetime distributions. See, for example,
[3], [5], [10], [13], [14], [15], [16] and [17].
In this paper, by using methodology of [4] and [8], a new discrete distribution

is proposed apart from discretizing continuous distributions. If N and X are two
discrete random variables denoting the number of particles entering and leaving an
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attenuator, then [8], showed that the probability mass functions of p(n) and f(x)
of these two random variables are connected by the binomial decay transformation

P (X = x) =

∞∑
n=x

(
x

n

)
px(1− p)n−xp(n), x = 0, 1, ... (1)

which 0 ≤ p ≤ 1 is the attenuating coeffi cient which is discussed in [8]. They
considered p(n) as a Poisson distribution with parameter λ > 0 and then showed
that P (X = x) is Poisson distribution with parameter λp. Recently, some new
discrete distributions are proposed in the literature using methodology of [8]. See,
for example, [1] and [4].
The rest of the paper is structured as follows. In Section 2, the Binomial-Discrete

Lindley distribution is introduced and some properties of the distribution such as
moments, moment generating function and hazard rate function are obtained. In
Section 3, some estimates of the distribution parameter are discussed by maximum
likelihood, moments and proportions methodology. Simulation study is conducted
to compare the performance of the different estimates in Section 4. Finally, Section
5 illustrates the application of the proposed distribution in modelling automobile
claim frequency data.

2. The distribution and some properties

The probability mass function (pmf) given in (1) can be expressed as

P (X = x) =

∞∑
n=x

P (X = x | N = n)P (N = n) ,

where X|N = n has Binomial b(n, p) distribution. Now, let the distribution of
X|N = n is Binomial b (n, p) distribution and N follows the discrete Lindley dis-
tribution with pmf (see [5])

p(n) = P (N = n) =
pn

1− log p
[
p log p+ (1− p)

(
1− log pn+1

)]
for n = 0, 1, ... and 0 < p < 1. Then the marginal pmf of X is obtained as

f (x) =

∞∑
n=x

P (X = x | N = n) P (N = n) ,

=

∞∑
n=x

(
n

x

)
px (1− p)n−x pn

1− log p
[
p log p+ (1− p)

(
1− log pn+1

)]
=

∞∑
j=0

(
x+ j

x

)
px (1− p)j px+j

1− log p
[
p log p+ (1− p)

(
1− log

(
px+j+1

))]
=

p2x
[(
p3 − (1− p) (1− p+ x)

)
log p+ (1− p) (1− p (1− p))

]
(1− log p) (1− p (1− p))x+2

, (2)
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for x = 0, 1, . . . . If X has the pmf (2), then it is called a Binom Discrete Lindley
(BDL) random variable and it is denoted by X ∼ BDL (p).
The cumulative distribution function(cdf) of X can be obtained as

F (x) =

x∑
n=0

p2n
[(
p3 − (1− p) (1− p+ n)

)
log p+ (1− p) (1− p (1− p))

]
(1− log p) (1− p (1− p))n+2

= 1−
{
[1 + (−2− x) log p] p(2x+2) +

(
p(2x+3) (1− p)

)
(log p− 1)

} (
p2 − p+ 1

)−2−x
1− log p

for x = 0, 1, . . .

Theorem 1. The pmf in (2) is log-concave.

Proof. From ([12], [18], [6], [11]), a distribution with pmf fX (x) is log-concave if

fX (x+ 1)
2
> fX (x) fX (x+ 2) (3)

for all x ≥ 0. Under p ∈ (0, 1)

fX (x+ 1)
2 − fX (x) fX (x+ 2) =

p(4x+4)
(
p2 − p+ 1

)(−2x−6)
(log p)

2
(p− 1)2

(log p− 1)2
> 0

for all x ≥ 0. So (3) is satisfied for pmf (2). �

Figure 1 presents the plots of the DBL(p) mass function for some choices of p.
From the log-concavity f(x) in (2), BDL (p) is unimodal.If X has the BDL (p)
distribution, then the moment generating function of X is obtained as

MX (t) = E
(
etX
)

=

∞∑
x=0

etX

{
p2x
[(
p3 − (1− p) (1− p+ x)

)
log p+ (1− p) (1− p (1− p))

]
(1− log p) (1− p (1− p))x+2

}

=

(
−p3 + p3et + p2 − 2p+ 1

)
log p− (p− 1)

(
p2et − p2 + p+ 1

)
(log p− 1) (p2et − p2 + p+ 1)2

.

Using the moment generating function MX(t), we can obtain the probability gen-
erating function of BDL(p) distribution as

ψX(t) = E(tX)

= MX(log(t))

=

(
1 + (t− 1) p3 + p2 − 2p

)
log p− (p− 1)

(
(t− 1) p2 + p− 1

)
(log p− 1) ((t− 1) p2 + p− 1)2

.
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Figure 1. Pmf of BDL(p) distribution for some choices of p

The expected value of the BDL (p) distribution is obtained as

E (X) =

∞∑
x=0

x

(
p2x
[(
p3 − (1− p) (1− p+ x)

)
log p+ (1− p) (1− p (1− p))

]
(1− log p) (1− p (1− p))x+2

)

=
(p log p− p− 2 log p+ 1) p2

(1− log p) (p− 1)2
. (4)

Note that the expressions for higher moments, skewness and kurtosis of the BDL(p)
distribution are too cumbersome and they are not reported here. Table 1 presents
the skewness and kurtosis of the BDL(p) distribution for different values of the
parameter p. From Table 1 and Figure 1, it can be easily seen that skewness and
kurtosis are inversely proportional to p.

Table 1. Skewness and kurtosis of the BDL distribution for different values of the
parameter p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Skewness 7.2509 3.6302 2.5036 1.9996 1.7384 1.5914 1.5044 1.4537 1.4237
Kurtosis 56.8091 17.4025 10.4588 8.1451 7.1219 6.5914 6.2913 6.1186 6.0281
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Theorem 2. If X ∼ BDL (p), then V ar (X) ≥ E (X) for p ∈ (0, 1) .

Proof. Let us consider following identity:

V ar (X)− E (X) = E
(
X2
)
− E (X) (1 + E (X))

=

[
−2p3 + 2p3 log p− 7p2 log p+ 3p2 − 2p+ 3p log p− 2 log p+ 1

]
p2

(p− 1)3 (log p− 1)

− (p log p− p− 2 log p+ 1) p
2

(1− log p) (p− 1)2

{
1 +

(p log p− p− 2 log p+ 1) p2

(1− log p) (p− 1)2

}
.

After some simple algebras, we have

V ar (X)−E (X) ≥ 0⇐⇒
(
p2 − 4p+ 2

)
(log p)

2
+ (p− 1)2︸ ︷︷ ︸

f1(p)

−
(
2p2 − 6p+ 4

)
log p︸ ︷︷ ︸

f2(p)

≥ 0.

It is clear that f2 (p) < 0 for p ∈ (0, 1) . In order to show f1 (p) − f2 (p) ≥ 0 it is
enough to show that f1 (p) ≥ 0 for p ∈ (0, 1). For p ∈ (0, 1) , we can write(

2p2 − 4p+ 2
)
=
(
p2 − 4p+ 3

)
−
(
1− p2

)
≥ 0. (5)

On the other hand, using the well-known relation

p <

(
p− 1
log p

)
in (5), we can obtain the following inequalities

(
p2 − 4p+ 3

)
−
{
1−

(
p− 1
log p

)2}
=

(
p2 − 4p+ 3

)
log2 p− log2 p+ (p− 1)2

log2 p
≥ 0

(6)
From (6), we conclude that

f1 (p) =
(
p2 − 4p+ 2

)
log2 p+ (p− 1)2 ≥ 0.

Consequently, f1(p) ≥ 0 for p ∈ (0, 1) and the proof is completed. As a consequence
of Theorem 2, BDL is overdispersed. �

The hazard (failure) rate function of the discrete random variable X ∼ BDL (p)
is defined by

h (x) = P (X = x | X ≥ x) = P (X = x)

P (X ≥ x) , (7)

provided P (X ≥ x) > 0. Eq (7) may be considered as the classical discrete hazard
rate function. From Eq. (2) the hazard rate function of BDL (p) distribution is

h(x) =
log p

(
p3 − p2 + px+ 2p− 1− x

)
− p3 + 2p2 − 2p+ 1

(p2 − p+ 1) (−p2 + p2 log p+ p− p log p− 1 + log p+ x log p)
From Theorem 1, the pmf is log-concave and hence the BDL distribution has in-
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Figure 2. Hazard rate function for different values of p

creasing failure rate. Figure 2 provides the hazard rate function of BDL(p) distri-
bution for selected values of p.

3. Point Estimations

In this section, we discuss the estimation of unknown parameter p of the BDL
distribution by maximum likelihood, proportion and moment methodology.

3.1. Maximum likelihood estimation. LetX1, X2, . . . , Xn be a random sample,
with observed values x1, x2, . . . , xn from BDL (p). The likelihood and log-likelihood
functions are given respectively by

L(p) =
n∏
i=1

p2xi
[(
p3 − (1− p) (1− p+ xi)

)
log p+ (1− p) (1− p (1− p))

]
(1− log p) (1− p (1− p))xi+2

and

` (p) =

n∑
i=1

log
((
p2 − p3 + p (−xi − 2) + xi + 1

)
log p+ p3 − 2p2 + 2p− 1

)
+(−2− xi) log

(
p2 − p+ 1

)
+ 2xi log p− log (log p− 1) ,
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Thus, the likelihood equation is obtained as

∂ log ` (p)

∂p

=

n∑
i=1

(
−3p2 + 2p− 2− xi

)
p log p+ 3p3 − 4p2 + 2p

(p2 − p3 + p (−xi − 2) + xi + 1) p log p+ p4 − 2p3 + 2p2 − p

+

(
p2 − p3 + p (−xi − 2) + xi + 1

)
(p2 − p3 + p (−xi − 2) + xi + 1) p log p+ p4 − 2p3 + 2p2 − p

+
(−xi − 2) (2p− 1)

p2 − p+ 1 +
2xi
p
− 1

p (−1 + log p) = 0. (8)

The maximum likelihood estimate (MLE) of parameter, i.e., p̂, can be achieved
by solving Eq (8) using some numerical procedures such as the Newton-Raphson
procedure.

3.2. Method of moments. Let us X1, X2, . . . , Xn be a random sample from
the BDL (p) distribution. To estimate the parameter p by the method of moments
(MM), we need to solve the moment equation E(X) = X, i.e.,

(p log p− p− 2 log p+ 1) p2

(1− log p) (p− 1)2
=
1

n

n∑
i=1

Xi, (9)

Eq (9) can be solved numerically via Newton-Raphson.

3.3. Method of proportions. In this section, method of proportions is adopted
to estimate the parameter p from [9]. Let X1, X2, . . . , Xn be a random sample from
the BDL(p) distribution. For i = 0, 1, . . . , n, define the indicator function ν(.) as

ν (Xi) =

{
1, Xi = 0
0, Xi > 0

It is easily seen that Y = 1
n

∑n
i=1 ν (Xi) denotes the proportion of 0′s in the sample.

Also, the proportion Y is an unbiased and consistent estimate of the probability

f (0) =

(
p2 − p3 − 2p+ 1

)
log p+ p3 − 2p2 + 2p− 1

(−1 + log p) (p2 − p+ 1) .

Therefore, the method of proportion (MP) estimate of p can be obtained by solving
the equation Y = P (Y = 0), i.e.,

Y =

(
p2 − p3 − 2p+ 1

)
log p+ p3 − 2p2 + 2p− 1

(−1 + log p) (p2 − p+ 1) = h (p) (10)

with respect to p. This equation must be solved by some numerical methods.
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4. Simulation Study

In this section, simulation study is performed to compare the performance of
estimates given in Section 3. In this simulation, we have generated 10000 random
samples with sizes 10, 30, 50 and 100 from the BDL (p) distribution and then
computed the MLE, MM and MP of p. We compared then the performance of
these estimators in terms of their biases and mean square errors (MSEs) as follows:

Biasp (n) =
1

10000

10000∑
i=1

(p̂i − p)

MSEp (n) =
1

10000

10000∑
i=1

(p̂i − p)2

In the following, an algorithm is suggested to generate the random sample from
BDL (p) distribution. A random sample from BDL (p) can be generated by using
the following algorithm.

Algorithm 3. S1. Generate Ui ∼ Uniform (0, 1), i = 1, 2, ..., n,
S2. Using the probability integral transformation rule

(
F−1 (Yi) = Ui

)
, generate

Yi from the discrete Lindley DL(p) distribution. Not that Yi is the root of the
equation

1− (θ(1+Yi)+1) exp(−θYi)
θ+1 = Ui , i = 1, 2, ..., n ,

where Yi can be solved by some numerical methods such as the Newton-Raphson
method.
S3. Set Ni = bYic, i = 1, 2, ..., n,where bxc is the greatest integer less than or

equal to x.
S4. For i = 1, 2, . . . , n generate Xi ∼ Binomial (Ni, p) . Then X1, X2, . . . , Xn

is the required sample from the BDL (p) distribution.

In Table 2, the biases and MSEs of these estimators are reported. From Table 2,
the maximum likelihood and moment estimates have almost identical performance
and their MSEs are better than MSE of proportion estimate for all selected para-
meters setting. Bias of proportion is better the others for small values of p (say
p < 0.5) and worse the the others for large values of p (say p > 0.5). It should
be pointed out that performance of all estimates are the same for large values of
sample size of n.
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Table 2 . Biases and MSEs of MLE, MM, and LSE estimators for some different values
of p.

MLE MM MP

(p) n Bias(p̂) Mse(p̂) Bias(p̂) Mse(p̂) Bias(p̂) Mse(p̂)
(0.20) 10 -0.0572 0.0128 -0.0556 0.0125 -0.0510 0.0144

30 -0.0158 0.0047 -0.0155 0.0046 -0.0136 0.0049
50 -0.0081 0.0022 -0.0080 0.0022 -0.0069 0.0023
100 -0.0043 0.0011 -0.0042 0.0010 -0.0035 0.0011

(0.50) 10 -0.0142 0.0051 -0.0142 0.0051 -0.0012 0.0093
30 -0.0042 0.0015 -0.0042 0.0015 0.0006 0.0028
50 -0.0027 0.0009 -0.0027 0.0009 0.0008 0.0017
100 -0.0014 0.0005 -0.0014 0.0005 -0.0002 0.0008

(0.75) 10 -0.0071 0.0018 -0.0071 0.0018 -0.0247 0.0074
30 -0.0026 0.0005 -0.0026 0.0005 0.0038 0.0033
50 -0.0021 0.0003 -0.0021 0.0003 0.0035 0.0021
100 -0.0008 0.0002 -0.0008 0.0002 0.0028 0.0010

(0.95) 10 -0.0020 0.0001 -0.0020 0.0001 0.0225 0.0045
30 -0.0008 0.0000 -0.0008 0.0000 0.0094 0.0038
50 -0.0006 0.0000 -0.0006 0.0000 0.0027 0.0030
100 -0.0004 0.0000 -0.0004 0.0000 -0.0062 0.0017

5. Application

In this section, the number of claims are considered in automobile insurance from
five different countries. Six different data sets are given in [7]. The data sets are
also used in [19]. All these data which are given in Table 3 present phenomena of
over-dispersion, that is, the variance is greater than the mean and, therefore, the
Binomial-Discrete Lindley distribution seems to be suitable for fitting them. The
BDL, Poisson, Discrete Pareto [10] and Discrete Lindley (DL) [5] models are used
to fit the automobile claim frequency data sets.

Table 3. Automobile claim data Willmot (1987).
Number of claims Country 0 1 2 3 4 5 6 7
Data Set I Switzerland 1961 103704 14075 1766 255 45 6 2 -
Data Set II Great-Britain 1968 370412 46545 3935 317 28 3 - -
Data Set III Belgium 1958 7840 1317 239 42 14 4 4 1
Data Set IV Zaire 1974 3719 232 38 7 3 1 - -
Data Set V Belgium 1975-76 96978 9240 704 43 9 - - -
Data Set VI Germany 1960 20592 2651 297 41 7 0 1 -

In order to compare the models, we used following criteria: Akaike Information
Criterion(AIC), Bayesian Information Criterion (BIC), log-likelihood values which
are given in Table 4. From Table 4, BDL distribution gives better fit than the
others for the first and last data sets.
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Table 4. Results of AIC, BIC and log-likelihood for BDLD and other distributions for
automobile claim data sets.

BDLD DLD Poisson Disc. Pareto
Data Set I ` -54659.100 -54659.614 -55108.455 -56351.011

AIC 109320.201 109321.227 110218.910 112704.021
BIC 109329.895 109330.921 110228.604 112713.715

Data Set II ` -171198.407 -171196.166 -171373.176 -178321.718
AIC 342398.813 342394.333 342748.352 356645.437
BIC 342409.764 342405.283 342759.303 356656.388

Data Set III ` -5377.784 -5377.510 -5490.780 -5486.714
AIC 1075.757 1075.702 1098.356 1097.543
BIC 1076.472 1076.418 1099.072 1098.258

Data Set IV ` -1217.358 -1217.698 -1246.077 -1186.498
AIC 2436.717 2437.397 2494.154 2374.997
BIC 2443.011 2443.691 2500.448 2381.291

Data Set V ` -36104.236 -36104.217 -36188.254 -37238.158
AIC 72210.472 72210.435 72378.508 74478.317
BIC 72220.052 72220.015 72388.088 74487.897

Data Set VI ` -10228.342 -10228.453 -10297.843 -10551.846
AIC 20458.684 20458.906 20597.686 21105.693
BIC 20466.752 20466.975 20605.755 21113.761
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