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STABILIZED FEM SOLUTIONS OF MHD EQUATIONS AROUND
A SOLID AND INSIDE A CONDUCTING MEDIUM

S.H. AYDIN

Abstract. In this study, the numerical solution of the magnetohydrodynamic
(MHD) flow is considered in a circular pipe around a conducting solid and in
an insulating or conducting medium. An external magnetic field is applied
through axis of the pipe with an angle α with through the x-axis. The math-
ematical model of the considered physical problem can be defined in terms
of coupled MHD equations in the pipe domain and the Laplace equations on
the solid and external mediums. The coupled equations are transformed into
decoupled inhomogeneous convection-diffusion type equations in order to ap-
ply stabilization in the finite element method solution procedure. Obtained
stabled solutions for the high values of the problem parameters display the
well-known characteristics of the MHD pipe flow.

Introduction

The electrically conducting, viscous and incompressible fluid is driven down a
straight pipe of suffi cient length and of circular cross-section by a constant pressure
gradient under an external magnetic field applied perpendicular to the axis of the
pipe [1]. MHD pipe flow finds some engineering and biomedical applications as
MHD generators, pumps and instruments for measuring blood pressure. In this
study, a suffi ciently long annular pipe around a cylindrical conducting solid and
inside a medium is considered which may be electrically insulated or conducting.
There is an electrically conducting, viscous and incompressible fluid in the annular
region. The fluid moves by a constant pressure gradient under an external magnetic
field applied perpendicular to the axis of the pipe. The considered problem models
the MHD turbines and nuclear fusion apparatus. Therefore there are many studies,
most of them are numerical in the literature. Hartmann firstly investigated the
MHD flow of viscous, incompressible flow between two plates [2]. Then, many
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number of authors have interested in the solutions of the MHD pipe flow equations
both analytically and numerically.
The MHD pipe flow problem without a solid in the pipe but in a conducting

medium has been solved by using BEM [3] for square and circular pipes, by using
DRBEM [4] and FEM [5] for a circular pipe with the assumption that the induced
magnetic field of outside conducting medium tends to zero at infinity.
The standard Galerkin FEM is one of the most usable numerical solution tech-

nique for the linear/nonlinear or coupled boundary value problems. However, it is
well known that numerical solution of the MHD problems for the high values of
the problem parameters (Reynolds number, Hartmann number, etc.) bring some
well-known numerical instabilities. In order to eliminate these numerical diffi cul-
ties, either a finer mesh should be used or a stabilized finite element methods
should be considered in the numerical solution procedure. Using the finer mesh
increases the size of the resulting system of equations so the computational time
and computational cost which is not preferred. Therefore, as an alternative, some
stabilization techniques should be used in the solution procedure. Streamline Up-
wind Petrov-Galerkin (SUPG) method [6] is the most popular and widely used. In
1979, Hughes and Brooks [6] proposed the SUPG method in order to solve the in-
compressible Navier-Stokes equations as a first application. The proposed method
has better stability and accuracy futures compared to previously used standard
method. The method has been already applied for many different problems such
as convection-diffusion typed equations, Navier-Stokes equations, MHD equations,
natural convection equations. Also some variants of the method are developed
such as GLS (Galerkin Least Square), DWG(Douglas-Wang), RFB(Residual Free
Bubble), TLFEM(Two Level Finite Element Method), SSM(Stabilizing Subgrid
Method). The SUPG method reduces the oscillations in the standard Galerkin
FEM solutions by adding the mesh-dependent perturbation terms to the formula-
tion [8]. In this study we have used SUPG typed stabilization for the considered
problem.

1. Mathematical Modeling

Mathematical problem is derived from Navier-Stokes equations of continuum
mechanics and Maxwell’s equations of electromagnetic field through Ohm’s law.
Assume that the cross-section of the pipe contains solid Ωs, annular fluid domain
Ωf and conducting outside region is Ωex (see Fig. 1). Also, we assumed that
magnetic field is applied through with an angle α with x-direction [1].
Therefore, governing coupled differential equations in non-dimensional form are

written as [3]

∇2Bs = 0 in Ωs (1.1)
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Figure 1. Domain of the problem and sample mesh used in the
numerical scheme
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 in Ωf (1.2)

∇2Bex = 0 in Ωex (1.3)

with boundary conditions

V f (x, y) = 0

Bf (x, y) = Bs(x, y)

1

Rmf

∂Bf

∂n′
=

1

Rms
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and
V f (x, y) = 0

Bf (x, y) = Bex(x, y)

1

Rmf
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∂n′′′
=

1

Rmex

∂Bex

∂n′′′′

(x, y) ∈ Γ2 (1.5)

where V f (x, y), Bs(x, y), Bf (x, y) and Bex(x, y) are the velocity of the fluid, in-
duced magnetic field of the solid, induced magnetic field of the fluid and induced
magnetic field of the external medium, respectively. The superscripts s, f and
ex correspond to solid, fluid and external medium, respectively. The parameters
Re,Rh,Rms, Rmf and Rmex are the Reynolds number, magnetic pressure, mag-
netic Reynolds number of the solid, magnetic Reynolds number of the fluid and
magnetic Reynolds number of the external medium, respectively. The unit normal
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vectors n′ and n′′′ are the inward normal vectors, and n′′ and n′′′′ are the outward
normal vectors.
In order to apply FEM, an artificial boundary (Γ3) should be defined for the

unbounded external region. Using the behavior of the real potential solution of
Bex, we can assume that Bex → 0 as x2 + y2 → ∞. Therefore one can define the
following boundary condition for the external region.

Bex(x, y) = 0 (x, y) ∈ Γ3. (1.6)

Alternatively, one can also use the free exit condition for Bex at infinity. Therefore,
it is also possible to use

∂Bex(x, y)

∂n′′′′
= 0 (x, y) ∈ Γ3 (1.7)

as a boundary condition. However, if this type of boundary condition is used,
induced magnetic field solutions will be obtained up to a constant. Therefore,
these values should be normalized by using the identity.∫

Ω

∫
BdΩ = 0. (1.8)

As a more simple case, if there is no solid inside the fluid, then equation (1.3)
and the boundary conditions (1.4) are not considered.

2. FEM Formulation

It is seen that both equations and also boundary conditions are in a coupled
form. Therefore all of the equations should be solved simultaneously. However, as
indicated in the introduction using the standard Galerkin finite element method for
these coupled equations, brings some numerical instabilities. Therefore we should
consider the SUPG typed stabilization technique.
In order to apply SUPG stabilization to the coupled MHD equations (1.2), they

should be in decoupled convection-diffusion typed equations. Therefore, they are
decoupled first denoting V = V f and B1 = ReRhBf

M , where M =
√
ReRhRmf is

the Hartmann number of the fluid. Then the coupled equations are rewritten as

∇2V +Mx
∂B1

∂x
+My

∂B1

∂y
= −1

∇2B1 +Mx
∂V

∂x
+My

∂V

∂y
= 0

(2.1)

where Mx = M cosα and My = M sinα.
In order to decouple the equations, the new variables U1(x, y) and U2(x, y) are

defined as
U1 = V +B1

U2 = V −B1
(2.2)
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then equations become

∇2U1 +Mx
∂U1

∂x
+My

∂U1

∂y
= −1

∇2U2 −Mx
∂U2

∂x
−My

∂U2

∂y
= −1.

(2.3)

Now, it is possible to use the SUPG type stabilized FEM technique to these decou-
pled equations. Before obtaining the SUPG typed formulation, let’s write standard
Galerkin FEM type weak formulation of the equations (1.1), (2.3) and (1.3) by
employing the linear function space L = (H1

0 (Ω))2 as: Find {Bs, U1, U2, B
ex} ∈

{L× L× L× L} such that

B(Bs;U1;U2;Bex, s; v1; v2; e)− `(U1;U2, v1; v2) = (1, v1) + (1, v2) (2.4)

∀{s, v1, v2, e} ∈ {L× L× L× L} where

B(Bs;U1;U2;Bex, s; v1; v2; e) = (∇Bs,∇s)

+ (∇U1,∇v1)− (Mx
∂U1

∂x
+My

∂U1

∂y
, v1)

+ (∇U2,∇v2) + (Mx
∂U2

∂x
+My

∂U2

∂y
, v2)

+ (∇Bex,∇e)

and

`(U1;U2, v1; v2) = (
∂U1

∂n
, v1) + (

∂U2

∂n
, v2)

where B(u, v) and `(u, v) are the usual bi-linear and linear forms for the domain
and boundary integrals as follows;

B(u, v) =

∫
Ω

uvdΩ and `(u, v) =

∫
∂Ω

uvds.

Then, the variational formulation is written by the choice of finite dimensional
subspaces Lh ⊂ L, defined by triangulation of the domain. Therefore, specifying a
finite element method [7]: Find {Bsh, U1h , U2h , B

ex
h } ∈ {Lh × Lh × Lh × Lh} such

that

B(Bsh;U1h ;U2h ;Bexh , sh; v1h ; v2h ; eh)− `(U1h ;U2h , v1h ; v2h) = (1, v1h) + (1, v2h)
(2.5)

∀{sh, v1h , v2h , eh} ∈ {L× L× L× L}.
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Now, it is ready to write the SUPG typed variational formulation of these equa-
tions using linear elements as [6];

B(Bsh;U1h ;U2h ;Bexh , sh; v1h ; v2h ; eh) + `(U1h ;U2h , v1h ; v2h)

+τK

{
(Mx

∂U1h
∂x +My

∂U1h
∂y + 1,Mx

∂v1h
∂x +My

∂v1h
∂y )

+ (Mx
∂U2h
∂x +My

∂U2h
∂y − 1,Mx

∂v2h
∂x +My

∂v2h
∂y )

}
= (1, v1h) + (1, v2h)

(2.6)

with the stabilization parameter

τK =


hK
2M

if Pek ≥ 1

h2
K

12
if Pek < 1

(2.7)

where hK is the diameter of the element K, PeK = hK
M

6
is the Peclet number.

For the value of hK there are two different approaches in the literature which are
the area of the element or the longest edge. In this study the value is taken as
the length of the longest edge. The Peclet number is mesh element size dependent
positive number and controls the convective and diffusive effects as a ratio. If the
flow is convective dominated or small diffusive the value of the Peclet number is
larger than 1.
Let’s turn back to original unknowns with inverse transformations

V =
U1 + U2

2

B1 =
U1 − U2

2
→ Bf =

M

ReRh
B1

(2.8)

and use the relations in the coupled boundary conditions (1.4) and (1.5) as

∂Bf

∂n
=
Rmf

Rms

∂Bs

∂n
on Γ1

and

∂Bf

∂n
=

Rmf

Rmex

∂Bex

∂n
on Γ2 ,
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then one gets the final variational form of the equations as

(∇Bsh,∇sh) + (∇Vh,∇v1h)−ReRh(cosα
∂Bfh
∂x

+ sinα
∂Bfh
∂y

, v1h)

+τK(Mx
∂Vh
∂x

+My
∂Vh
∂y

,Mx
∂v1h

∂x
+My

∂v1h

∂y
) + (∇Bfh ,∇v2h)

−Rmf (cosα
∂Vh
∂x

+ sinα
∂Vh
∂y

, v2h) + τK(Mx
∂Bfh
∂x

+My
∂Bfh
∂y

,Mx
∂v2h

∂x
+My

∂v2h

∂y
)

−Rmf

Rms
(
∂Bsh
∂n

, v2h)− Rmf

Rmex
(
∂Bexh
∂n

, v2h) + (∇Bexh ,∇eh)

= (1, v1h)−RmfτK(1, cosα
∂v2h

∂x
+ sinα

∂v2h

∂y
).

(2.9)
We will obtain the system of linear equations in matrix-vector form as



K 0 0 0

0 K + S −ReRhC 0

−Rmf

Rms
Q RmfC K + S − Rmf

Rmex
Q

0 0 0 K





Bs

V f

Bf

Bex


=



0

R1

R2

0


(2.10)

where K,C, S and Q are the matrices and R1 and R2 are the vectors with the
entries

Kij =

∫
Ωf

(
∂Ni
∂x

∂Nj
∂x

+
∂Ni
∂y

∂Nj
∂y

)
dΩ ,

Cij =

∫
Ωf

(
cosα

∂Ni
∂x

+ sinα
∂Ni
∂y

)
NjdΩ ,

Sij =

∫
Ωf

τK

(
Mx

∂Ni
∂x

+My
∂Ni
∂y

)(
Mx

∂Nj
∂x

+My
∂Nj
∂y

)
dΩ ,

Qij =

∫
Γf

∂Ni
∂n

NjdΓ , R1i =

∫
Ωf

NidΩ .

R2i =

∫
Ωf

τK

(
Mx

∂Ni
∂x

+My
∂Ni
∂y

)
dΩ .

From the solution of the system 2.10, the induced magnetic field of the solid,
the velocity of the fluid, the induced magnetic field of the fluid and the induced
magnetic field of the external medium are obtained at the discretization points.
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3. Numerical Results and Discussion

In this section, some test results of the considered stabilized FEM formulation are
given in terms of contour plots of the velocity and induced magnetic field. For the
small value of the Hartmann number (M = 100) 17652 linear triangular elements
obtained from 8985 discretization points are used. However, for the large value of
the Hartmann number (M = 1000) the number of the linear triangular elements is
31530 (from 15976 discretization points). The obtained system of linear equations
are solved by using the linear system solver from Netlib library called dgsev.

3.1. Case 1: No solid inside the pipe. As the first test problem, it is assumed
that there is no solid inside the pipe. The radius of the circular pipe is taken as
1 and the radius of the artificial boundary is 3. Both of the pipe domain and the
external region is discretized using linear triangular elements.

Figure 2. The effect of the stabilization velocity (left) and in-
duced magnetic fields (right) for Rmf = 100, Rmex = 1, Re =
10, Rh = 10

In Figure 2, the effect of the stabilization in both velocity and induced magnetic
fields for the values Rmf = 100, Rmex = 1, Re = 10 and Rh = 10, so Hartmann
number becomes M = 100. In Figure 2(a), standard Galerkin FEM solutions,
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in Figure 2(b), SUPG typed stabilized solutions are displayed. The stabilization
effect is clearly seen in fluid velocity and induced current values inside the pipe
domain. Since the Laplace equation is solved in the external region, both Galerkin
and SUPG solutions are regular in the external region.
The moderate Hartmann value (M = 1000) results are displayed in Figure 3.

The accuracy of the proposed numerical scheme is seen clearly even for the very
large values of the problem parameters. Also, the well known characteristic of
MHD flow which is boundary layer formation is seen both in the fluid velocity and
in the induced magnetic field as Rmf getting larger. The velocity values are getting
smaller inside the pipe center for the large values of M .

Figure 3. Velocity of the fluid and induced magnetic fields for
Rmf = 1000, Rmex = 1, Re = 100, Rh = 10

In Figure 4, the problem is solved with the same parameters as in Figure 3 but
with the angle α = π/4. It is seen that, the same behaviors are obtained with
rotating angle α.
The normal derived boundary condition for Bex on Γ3 is also tested and displayed

in Figure 5. As expected, induced magnetic field contours are perpendicular to the
artificial external boundary, and they have tendency to become zero at infinity.

3.2. Case 2: A conducting solid inside the pipe. In the second case, let’s
assume that there is a conducting solid inside the pipe with unit circular cross
section and outer radius of the circular pipe is 3. Therefore the fluid moves inside
the annular pipe domain. Similar to Case 1, we have tested the proposed numerical
scheme for the values Rmf = 1000, Rms = 10, Rmex = 1, Re = 10, Rh = 10 so
M = 100 using boundary condition 1.6 in Figure 6 and boundary condition 1.7 in
Figure 7 with α = π/2. The continuation of the induced magnetic contours and the
effect of ratios Rmf

Rms
and Rmf

Rmex
is clearly seen from the figure. Existence of different

circulations in the velocity is also observed.



206 S.H. AYDIN

Figure 4. Velocity of the fluid and induced magnetic fields for
Rmf = 1000, Rmex = 1, Re = 100, Rh = 10, α = π/4

Figure 5. Velocity of the fluid and induced magnetic fields for the
normal derivative boundary condition and for Rmf = 500, Rmex =
1, Re = 50, Rh = 10,M = 500

4. Conclusion

The magnetohydrodynamic flow inside a circular cross-section duct around a
conducting solid in an insulating or conducting medium is solved using stabilized
finite element method. Even the considered problem has been already solved with
some other numerical solution procedures, the proposed formulation enables to
obtain the stable solution for the high values of the problem parameters. Obtained
solutions are in good agreement with the previously obtained results and display
the well-known characteristics of the MHD flow [3, 4].
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Figure 6. Velocity of the fluid and induced magnetic fields for
Rmf = 1000, Rms = 10, Rmex = 1, Re = 10, Rh = 10, α = π/2

Figure 7. Velocity of the fluid and induced magnetic fields for the
normal derivative boundary condition and for Rmf = 500, Rmex =
1, Re = 50, Rh = 10, α = π/2
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