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CERTAIN NEW HERMITE-HADAMARD TYPE INEQUALITIES
FOR CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

ERHAN SET, M. EMIN ÖZDEMIR, AND NECLA KORKUT

Abstract. The object of this paper is to obtain certain Hermite-Hadamard
type integral inequalities involving general class of fractional integral oper-
ators and the fractional integral operators with exponential kernel by using
harmonically convex functions.

1. Introduction

Let a real function f be defined on some nonempty interval I of a real line R.
The function f is said to be convex on I if inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. We say that f is concave if (−f) is convex.
Convexity is an important concept in many branches of mathematics. In particular,
many important integral inequalities are based on a convexity assumption of a
certain function. For example, the following famous inequality is one of them. Let
f : I ⊆ R→ R be a convex function defined on the interval I of real numbers and
a, b ∈ I with a < b. The following inequality holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

It was firstly discovered by Ch. Hermite [2] in 1881 in the journal Mathesis. But
this inequality was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s results. E.F. Beckenbach wrote that this result was
proven by J. Hadamard in 1893. In 1974, D.S. Mitrinovic found Hermite’s note
in Mathesis. This inequality known as Hadamard’s inequality is now commonly
referred as the Hermite-Hadamard inequality. Hermite-Hadamard inequality is
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playing a very important role in all the fields of mathematics. Thus such inequal-
ities were studied extensively by many researchers and a number of the papers
have been written on this inequality providing new proofs, noteworthy extensions,
generalizations and numerous applications. In recent years, one more dimension
has been added to this studies, by introducing various integral inequalities involv-
ing fractional integral operators like Riemann-Liouville, Hadamard, Erdelyi-Kober,
Katugampola fractional operators and fractional operator with exponential kernel.
A different class of the convexity is introduced by İşcan as the following:

Definition 1. [3] Let I ⊆ R/{0} be a real interval. A function f : I → R is said
to be harmonically convex, if

f

(
xy

tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) (1.2)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.2) is reserved, then f is said to
be harmonically concave.

In [3], İşcan established the following inequalities which is different version of
Hermite-Hadamard inequality.

Theorem 1. Let f : I ⊆ R/{0} → R be a harmonically convex function and
a, b ∈ I with a < b. If f ∈ L[a, b] then the following inequalities hold:

f

(
2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
≤ f(a) + f(b)

2
. (1.3)

We need to recall some definitions and known results.

Definition 2. Let f ∈ L1[a, b]. The Riemannn-Liouville fractional integrals Jαa+f
and Jαb−f of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively.
Here Γ(t) is the Gamma function and its definition is Γ(t) =

∫∞
0
e−xxt−1dx. It is

to be noted that J0a+f(x) = J0b−f(x) = f(x). In the case of α = 1, the fractional
integral reduces to the classical integral.

For more details and properties concerning the fractional integral operators, we
refer, for example, to the works [6, 8].
İşcan and Wu [4], recently, using Riemann-Liouville fractional integral, presented

Hermite-Hadamard integral inequalities for harmonically convex function as follow:
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Theorem 2. Let f : I ⊆ (0,∞) → R be a function such that f ∈ L[a, b] where
a, b ∈ I with a < b. If f is a harmonically convex function on [a, b], then the
following inequalities for fractional integral hold:

f

(
2ab

a+ b

)
≤ Γ(α+ 1)

2

(
ab

a+ b

)α{
Jα1
a

(fog)(
1

b
) + Jα1

b
(fog)(

1

a
)

}
≤ f(a) + f(b)

2
(1.4)

with α > 0 and g(x) = 1/x.

Lately, Kirane and Torebek [5], have introduced a new class of fractional integrals
which are summarized as follows:

Definition 3. Let f ∈ L1[a, b]. The fractional integrals Iαa and Iαb of order α ∈
(0, 1) are defined by

Iαa f(x) =
1

α

∫ x

a

exp

{
−1− α

α
(x− s)

}
f(s)ds, x > a

and

Iαb f(x) =
1

α

∫ b

x

exp

{
−1− α

α
(s− x)

}
f(s)ds, x < b

respectively.

If α = 1, then

limα→1I
α
a f(x) =

∫ x

a

f(s)ds, limα→1I
α
b f(x) =

∫ b

x

f(s)ds.

Therefore the operators Iαa and I
α
b are called a fractional integrals of order α.

Moreover, because

limα→0
1

α
exp

(
−1− α

α
(x− s)

)
= δ(x− s),

then
limα→0I

α
a f(x) = f(x), limα→0I

α
b f(x) = f(x).

In [7], Raina introduced a class of functions defined formally by

Fσρ,λ(x) = Fσ(0),σ(1),...ρ,λ (x) =

∞∑
k=0

σ(k)

Γ(ρk + λ)
xk (ρ, λ > 0; |x| < R), (1.5)

where the coeffi cients σ(k) (k ∈ N = N∪{0}) is a bounded sequence of positive real
numbers and R is the set of real numbers. With the help of (1.5), Raina [7] and
Agarwal et al. [1] defined the following left-sided and right-sided fractional integral
operators respectively, as follows:(

J σρ,λ,a+;wϕ
)

(x) =

∫ x

a

(x− t)λ−1Fσρ,λ[w(x− t)ρ]ϕ(t)dt (x > a > 0), (1.6)

(
J σρ,λ,b−;wϕ

)
(x) =

∫ b

x

(t− x)λ−1Fσρ,λ[w(t− x)ρ]ϕ(t)dt (0 < x < b), (1.7)
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where λ, ρ > 0, w ∈ R and ϕ(t) is such that the integral on the right side exits.
In recently some new integral inequalities involving this operator have appeared in
the literature (see, e.g., ([1],[9]-[15]).
It is easy to verify that J σρ,λ,a+;wϕ(x) and J σρ,λ,b−;wϕ(x) are bounded integral

operators on L(a, b), if

M := Fσρ,λ+1[w(b− a)ρ] <∞. (1.8)

In fact, for ϕ ∈ L(a, b), we have

||J σρ,λ,a+;wϕ(x)||1 ≤M(b− a)λ||ϕ||1 (1.9)

and
||J σρ,λ,b−;wϕ(x)||1 ≤M(b− a)λ||ϕ||1, (1.10)

where

||ϕ||p :=

(∫ b

a

|ϕ(t)|pdt
) 1

p

.

Here, many useful fractional integral operators can be obtained by specializing
the coeffi cient σ(k). For instance the classical Riemann-Liouville fractional inte-
grals Jαa+ and J

α
b− of order α follow easily by setting λ = α, σ(0) = 1 and w = 0 in

(1.6) and (1.7).
Here, motivated by the works in ([4],[5],[7]), we aim at establishing certain new
Hermite-Hadamard type inequalities associated with the fractional integral opera-
tors with exponential kernel and a general class of fractional integral operators by
using harmonically convex functions. Relevant connections of the results presented
here are also pointed out.

2. Mean Results

Firstly , we will present Hermite-Hadamard inequalities for harmonically convex
function via fractional integral operators with exponential kernel. We henceforth
in denote, A = 1−α

α
b−a
ab for α ∈ (0, 1).

Theorem 3. Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L1[a, b].
If f is a harmonically convex function on [a, b], then the following inequalities for
fractional integral operators with exponential kernel hold:

f

(
2ab

a+ b

)
≤ 1− α

2[1− exp(−A)]

[
Iα1
a

(fog)

(
1

b

)
+ Iα1

b
(fog)

(
1

a

)]
≤ f(a) + f(b)

2
.

Proof. Since f is a harmonically convex function on [a, b], we have for all x, y ∈ [a, b]

f

(
2xy

x+ y

)
≤ f(x) + f(y)

2
.

For x = ab
tb+(1−t)a , y = ab

ta+(1−t)b , we obtain
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f

(
2ab

a+ b

)
≤

f
(

ab
tb+(1−t)a

)
+ f

(
ab

ta+(1−t)b

)
2

. (2.1)

Multiplying both sides of (2.1) by exp(−At), then integrating the resulting in-
equality with respect to t over [0, 1], we get∫ 1

0

f

(
2ab

a+ b

)
exp(−At)dt

≤ 1

2

{∫ 1

0

exp(−At)f
(

ab

tb+ (1− t)a

)
dt+

∫ 1

0

exp(−At)f
(

ab

ta+ (1− t)b

)
dt

}
.

Hence, we obtain

2(1− exp(−A))

A f

(
2ab

a+ b

)
≤ ab

b− a

[∫ 1
a

1
b

exp

{
−1− α

α

(
b− a
ab

)(
s− 1

b

)(
ab

b− a

)}
f

(
1

s

)
ds

+

∫ 1
a

1
b

exp

{
−1− α

α

(
b− a
ab

)(
1

a
− s
)(

ab

b− a

)}
f

(
1

s

)
ds

]

=
abα

b− a

[
1

α

∫ 1
a

1
b

exp

{
−1− α

α

(
s− 1

b

)}
f

(
1

s

)
ds

+
1

α

∫ 1
a

1
b

exp

{
−1− α

α

(
1

a
− s
)}

f

(
1

s

)
ds

]

=
abα

b− a

[
Iα1
a

(fog)

(
1

b

)
+ Iα1

b
(fog)

(
1

a

)]
where g(x) = 1

x and the first inequality is proved.
For the proof of the second inequality in (1.2), we first note that if f is a har-

monically convex function then, for t ∈ [0, 1], it yields

f

(
ab

tb+ (1− t)a

)
≤ tf(b) + (1− t)f(a)

and

f

(
ab

ta+ (1− t)b

)
≤ tf(a) + (1− t)f(b).

By adding these inequalities we have

f

(
ab

tb+ (1− t)a

)
+ f

(
ab

ta+ (1− t)b

)
≤ f(a) + f(b). (2.2)
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Then multiplying both sides of (2.2) by exp(−At), and integrating the resulting
inequality with respect to t over [0, 1], we obtain∫ 1

0

exp(−At)f
(

ab

tb+ (1− t)a

)
dt+

∫ 1

0

exp(−At)f
(

ab

ta+ (1− t)b

)
dt

≤ [f(a) + f(b)]

∫ 1

0

exp(−At)dt.

Using the similar arguments as above we can show that

1− α
(1− exp(−A))

[
Iα1
a

(fog)

(
1

b

)
+ Iα1

b
(fog)

(
1

a

)]
≤ [f(a) + f(b)].

So, the proof is completed. �
Now, using a general fractional integral operators introduced by Raina [7] and

Agarwal et al. [1], we will prove Hermite-Hadamard inequalities for harmonically
convex functions.

Theorem 4. Let f : [a, b] → R be a function such that f ∈ L[a, b], where a, b ∈ I
with a < b. If f is a harmonically convex function on [a, b], then the following
inequalities for fractional integral operators holds:

f

(
2ab

a+ b

)
≤

(
ab

b− a

)λ
1

2Fσρ,λ+1[w
(
b−a
ab

)ρ
]

[
Jαρ,λ, 1a−;w

(fog)

(
1

b

)
+ Jαρ,λ, 1b+;w

(fog)

(
1

a

)]
≤

(
f(a) + f(b)

2

)
(2.3)

where λ > 0, g(x) = 1
x .

Proof. For t ∈ [0, 1], let x = ab
tb+(1−t)a , y = ab

ta+(1−t)b . The harmonically convexity
of f yields

f

(
2ab

a+ b

)
≤

f
(

ab
tb+(1−t)a

)
+ f

(
ab

ta+(1−t)b

)
2

. (2.4)

Multiplying both sides of (2.4) by tλ−1Fσρ,λ[w
(
b−a
ab

)ρ
tρ], then integrating the

resulting inequality with respect to t over [0, 1], we obtain

2f

(
2ab

a+ b

)∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
dt

≤
∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
f

(
ab

tb+ (1− t)a

)
dt

+

∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
f

(
ab

ta+ (1− t)b

)
dt.
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The following integrals calculated by using (1.5), we have∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
dt =

∫ 1

0

tλ−1

[ ∞∑
k→0

σ(k)wk
(
b−a
ab

)ρk
Γ(ρk + λ)

tρk

]
dt

=

∞∑
k→0

σ(k)wk
(
b−a
ab

)ρk
Γ(ρk + λ)

∫ 1

0

tλ+ρk−1dt

=

∞∑
k→0

σ(k)wk
(
b−a
ab

)ρk
Γ(ρk + λ+ 1)

= Fσρ,λ+1
[
w

(
b− a
ab

)ρ]
,

∫ 1

0

tλ−1Fσρ,λ+1
[
w

(
b− a
ab

)ρ
tρ
]
f

(
ab

tb+ (1− t)a

)
dt =

∫ 1
a

1
b

(
s− 1

b

)λ−1(
ab

b− a

)λ−1
×
[ ∞∑
k→0

σ(k)wk
(
b−a
ab

)ρk
Γ(ρk + λ)

(
s− 1

b

)ρk (
ab

b− a

)ρk](
1

s

)(
ab

b− a

)
ds

=

(
ab

b− a

)λ ∫ 1
a

1
b

(
s− 1

b

)λ−1
×
[ ∞∑
k→0

σ(k)wk

Γ(ρk + λ)

(
s− 1

b

)ρk](
1

s

)
ds

=

(
ab

b− a

)λ ∫ 1
a

1
b

(
s− 1

b

)λ−1
Fσρ,λ

[
w

(
s− 1

b

)ρ](
1

s

)
ds

and∫ 1

0

tλ−1Fσρ,λ+1
[
w

(
b− a
ab

)ρ
tρ
]
f

(
ab

ta+ (1− t)b

)
dt =

∫ 1
a

1
b

(
1

a
− s
)λ−1(

ab

b− a

)λ−1
×
[ ∞∑
k→0

σ(k)wk
(
b−a
ab

)ρk
Γ(ρk + λ)

(
1

a
− s
)ρk (

ab

b− a

)ρk](
1

s

)(
ab

b− a

)
ds

=

(
ab

b− a

)λ ∫ 1
a

1
b

(
1

a
− s
)λ−1

×
[ ∞∑
k→0

σ(k)wk

Γ(ρk + λ)

(
1

a
− s
)ρk](

1

s

)
ds

=

(
ab

b− a

)λ ∫ 1
a

1
b

(
1

a
− s
)λ−1

Fσρ,λ
[
w

(
1

a
− s
)ρ](

1

s

)
ds.

As a consequence, we obtain



68 ERHAN SET, M. EMIN ÖZDEMIR, AND NECLA KORKUT

2Fσρ,λ+1
[
w

(
b− a
ab

)ρ]
f

(
2ab

a+ b

)
≤

(
ab

a+ b

)λ [
Jαρ,λ, 1a−;w

(fog)

(
1

b

)
+ Jαρ,λ, 1b+;w

(fog)

(
1

a

)]
where g(x) = 1

x and the first inequality is proved. For the proof of the second
inequality in (2.3), we first note that if f is a harmonically convex function, then
for t ∈ [a, b], we have

f

(
ab

tb+ (1− t)a

)
+ f

(
ab

ta+ (1− t)b

)
≤ f(a) + f(b). (2.5)

Then multiplying both sides of (2.5) by tλ−1Fσρ,λ[w
(
b−a
ab

)ρ
tρ] and integrating the

resulting inequality with respect to t over [0, 1], we obtain

∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
f

(
ab

tb+ (1− t)a

)
dt

+

∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
f

(
ab

ta+ (1− t)b

)
dt

≤ [f(a) + f(b)]

∫ 1

0

tλ−1Fσρ,λ
[
w

(
b− a
ab

)ρ
tρ
]
dt.

Using the similar arguments as above we can show that

(
ab

a+ b

)λ [
Jαρ,λ, 1a−;w

(fog)

(
1

b

)
+ Jαρ,λ, 1b+;w

(fog)

(
1

a

)]
≤ Fσρ,λ

[
w

(
b− a
ab

)ρ
tρ
]

[f(a) + f(b)] .

So, the proof is completed. �

Remark 1. If in Theorem 4, we get λ = α, σ(0) = 1, w = 0, then the inequalities
(2.3) become the inequalities (1.4).

Remark 2. If in Theorem 4, we get λ = 1, σ(0) = 1, w = 0, then the inequalities
(2.3) become the inequalities (1.3).
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