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Abstract. Marshall—Olkin extended Burr XII (MOEBXII) distribution is
proposed by Al-Saiari et al. (2014) to obtain a more flexible family of dis-
tributions. Some estimation methods like maximum likelihood, Bayes and M
estimations are used to estimate the parameters of the MOEBXII distribution
in literature. In this paper, we propose to use Maximum Lq (MLq) estimation
method to find alternative estimators for the parameters of the MOEBXII dis-
tribution. We give some simulation studies and a real data example to compare
the performance of the MLq estimators with the maximum likelihood and M
estimators. According to our results MLq estimation method is a good alter-
native to the maximum likelihood and M estimation methods in the presence
of outliers.

1. Introduction

The Burr XII distribution is a member of a system which contains twelve dis-
tributions defined by Burr [3]. The distribution has relationship with various dis-
tributions like generalized Beta II, some mixtures of Weibull, logistic and Lomax.
Therefore, it can be used to identify data sets from a wide variety fields such as
financial [20], actuarial sciences [18], reliability and survival analysis [1, 13, 21, 22].
The Burr XII distribution has the probability density function (pdf)

f(x; c, k) = ck
x(c−1)

(1 + xc)k+1
, x ≥ 0, c > 0, k > 0 (1.1)

where c > 0 and k > 0 both are the shape parameters. The cumulative density
function (cdf) of Burr XII distribution is as follows

F (x; c, k) = 1− 1

(1 + xc)k
, x ≥ 0. (1.2)
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It is useful to generalize a distribution to provide flexibility and to model the data
sets with various shaped. For this reason a number of extension methods have been
proposed in literature. One of the most popular methods is to use Marshall Olkin
(MO) transformation [19]. The MO transformation provides an extra parameter
which yields a better fit with different types of data than baseline distribution. MO
extended distributions and their applications have been extensively studied in the
literature such as [4, 9, 10, 11, 12, 14, 24]. The MO transformation is defined as
given in below.
Let F (x) = 1− F (x) is the survival function of the baseline distribution. Then

the Marshall-Olkin (MO) extended distribution can be defined with the following
survival function

F (x) =
αF (x)

1− αF (x)
,−∞ < x <∞, α > 0 (1.3)

where α = 1− α. It can be easily seen that the MO extended distribution reduces
the baseline distribution when α = 1. Further the pdf of MO extended distribution
is given by

f(x) =
αf (x)[

1− αF (x)
]2 . (1.4)

By considering the Burr XII distribution as the baseline distribution, Marshall
Olkin Extended Burr XII (MOEBXII) distribution have been proposed by [2]. Com-
bining the equation (1.1) and equation (1.4), the pdf of the MOEBXII(α, c, k)
distribution is obtained as follows

f(x;α, c, k) = αck
x(c−1)(1 + xc)−(k+1)

[1− (1− α) (1 + xc)−k]
2 , x ≥ 0, α, c, k > 0. (1.5)

The cdf of this proposed distribution is given by

F (x;α, c, k) =
1− (1 + xc)−k

1− (1− α) (1 + xc)−k

where x ≥ 0 and α, c, k > 0.
The parameters of the MOEBXII can be estimated by using classical methods

such as maximum likelihood (ML) method and Bayesian method [2]. However, these
estimation methods are sensitive to the outliers in the data. Therefore, Güney and
Arslan [15] have proposed a robust estimation method based on M-estimation for
the parameters of the MOEBXII. Another estimation method which decreases the
influence of the outliers is the Maximum Lq-likelihood (MLq) estimation based on
q-order entropy. The q order entropy, which is proposed by Havrda and Charvat
[16], has the function

Lq(u) =

{
log u , q = 1

(u1−q − 1)/(1− q) , otherwise
.
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in place of log u in Shannon’s entropy, where u is the pdf. Maximizing likelihood
function is equivalent to minimize negative log likelihood function which relies on
Shannon entropy. To estimate the parameters, MLq likelihood estimation, which is
proposed by Ferrari et al.[7], use the Lq(u) function instead of loglikelihood function
as in the ML estimation method. The MLq estimation method has a distortion
parameter q which has an effect on the role of observations. The MLq estimation
method includes (1− q)th power of density as a weight, therefore it performs as a
robust estimation method. If q = 1, all the observations have the same weights as
equal to the ML method. Namely, the MLq estimator approaches the ML estimator
when q → 1 [7]. The MLq method reduces to the effect of the extreme observations
on the parameter estimations by the help of the distortion parameter q. Choosing
q is an another challenging problem in the MLq estimation. In this study, we take
q = 1− 1

n as given by [7] for sake of simplicity.
Consider that x = (x1, x2, ..., xn) be an independent identically distribution

(i.i.d.) sample from the pdf f(x; θ) with θ ∈ Θ ⊆ Rp. The MLq estimation of
θ is

θ̂n = arg max
θεΘ

n∑
i=1

Lq[f(xi, θ)], q > 0 (1.6)

where

Lq(u) =

{
log u , q = 1

(u1−q − 1)/(1− q) , otherwise
.

After Ferrari et al. [7] introduced the MLq estimation, some studies have been
carried out about MLq estimation method such as [8, 23, 25] Some of this studies
give information about effi ciency of MLq estimation while [25] emphasize its ro-
bustness. In this paper we studied on the MLq estimator for the parameters of the
MOEBXII and compare them with some estimators by means of mean square error
(MSE) values.
The rest of the paper is organized as follows: In Section 2, ML, robust M and

MLq estimation methods are summarized to obtain the estimates of the parameters
of MOEBXII(α, c, k). Some simulation studies are conducted in Section 3 to
compare the performance of the parameter estimation methods that we consider in
this paper. A CO2 emission data from different countries is investigated in Section
4. Finally we conclude the paper with a conclusion in Section 5.

2. Estimation of the Parameters of MOEBXII Distribution

In this section we give the ML, M and the MLq estimation of the parameters of
MOEBXII distribution.

2.1. Maximum Likelihood Estimation of MOEBXII Distribution. Suppose
that x = (x1, x2, ..., xn) be an i.i.d. random sample from the MOEBXII(α, c, k).
As known as the ML estimators can be obtained by maximizing the log-likelihood
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function with respect to the parameters of interest. Log-likelihood function of the
MOEBXII(α, c, k) is

l(α, c, k) = n log (αck) + (c− 1)

n∑
i=1

log xi − (k + 1)

n∑
i=1

log (1 + xci )

−2

n∑
i=1

log
(
1− (1− α) (1 + xci )

−k) . (2.1)

The derivatives of l(α, c, k) with respect to α, c and k can be written as

∂l

∂α
=
n

α
− 2

n∑
i=1

(1 + xci )
−k

1− (1− α) (1 + xci )
−k = 0, (2.2)

∂l

∂c
=

n

c
+

n∑
i=1

log xi − (k + 1)

n∑
i=1

xci log (xi)

(1 + xci )

−2k(1− α)

n∑
i=1

xci (1 + xci )
−(k+1) log (xi)

1− (1− α) (1 + xci )
−k = 0, (2.3)

and

∂l

∂k
=
n

k
−

n∑
i=1

log (1 + xci )− 2(1− α)

n∑
i=1

(1 + xci )
−k log(1 + xci )

1− (1− α) (1 + xci )
−k = 0. (2.4)

Since there are no explicit solutions for (2.2), (2.3) and (2.4), numerical methods
are used to solve this equation system.

2.2. M Estimation for the MOEBXII Distribution. To deal with outliers
in data M estimation method can be used to obtain robust estimators for the
parameters of Burr XII [6] and MOEBXII distribution. The M estimation method
estimate the parameters of interest by minimizing the following objective function
with the Huber or Tukey ρ function [17]. M estimation method is considered by
Güney and Arslan [15] for the MOEBXII distribution.

Q(α, c, k) =

n∑
i=1

ρ (yi − log log (α− 1) + log log (α)− log (k)− log log(1 + xci )) .

(2.5)
Taking the derivatives of the objective function Q with respect to each parameter
and adjusting the equations, M estimators of MOEBXII parameters can be obtained
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by solving the following equations:

log k̂ =

n∑
i=1

ωiyi

n∑
i=1

ωi

−

n∑
i=1

ωi log log(1 + xci )

n∑
i=1

ωi

− log log (α− 1) + log log (α) , (2.6)

n∑
i=1

(
ωi (yi − log log (α− 1) + log log (α)− log (k)− log log(1 + xci ))

× xci log(xi)
(1+xci ) log(1+xci )

)
= 0,

(2.7)

log (log (α) log (α− 1)) =

n∑
i=1

ωiyi

n∑
i=1

ωi

−

n∑
i=1

ωi log log(1 + xci )

n∑
i=1

ωi

− log(k) (2.8)

where

ωi = min

{
1,

b1
|(yi − log log (α− 1) + log log (α)− log (k)− log log(1 + xci ))|

}
(2.9)

and

ωi =

 (
1−

(
(yi−log log(α−1)+log log(α)−log(k)−log log(1+xci ))

b2

)2
)2

×I(|(yi − log log (α− 1) + log log (α)− log (k)− log log(1 + xci ))| ≤ b2)


(2.10)

for the Huber’s ρ function and Tukey’s ρ function, respectively [15], since Huber’s
ρ function is

ρ(x) =

{
x2 , |x| ≤ b1

2b1 |x| − b21 , |x| > b1
and Tukey’s ρ functions is

ρ(x) =

{
1−

(
1− (x/b2)

2
)2

, |x| ≤ b2
1 , |x| > b2

where b1 and b2 are robustness tuning constants.
M estimates of interested parameters can be found by solving these equations

numerically because there are no analytical solutions for them.

2.3. Maximum Lq Likelihood Estimation of the MOEBXII Distribution.
MLq estimation for the parameters of a distribution with the pdf f(x; θ) is given
in equation (1.6). To obtain the MLq estimators define

U(x, θ) = ∇θ [log f(x; θ)] ,

U∗(x, θ, q) = U(x, θ)f(x; θ)1−q.
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Then the solution of estimating equation
n∑
i=1

U∗(x, θ, q) = 0

gives the MLq estimator θ̂n [7].
Let x = (x1, x2, ..., xn) be an i.i.d. sample of size n from the MOEBXII distri-

bution with the pdf given in equation (1.5). The Lq-likelihood equations can be
defined as

n∑
i=1

[f(xi;α, c, k)]
(1−q) 5α,c,k log f(xi;α, c, k) = 0.

Namely,
n∑
i=1

[
(αck)xc−1

i (1 + xci )
−(k+1)

[1− (1− α)(1 + xc)−k]2

](1−q)

5α,c,k log

[
(αck)xc−1

i (1 + xci )
−(k+1)

[1− (1− α)(1 + xc)−k]2

]
= 0

(2.11)
where 5α,c,k log f(xi;α, c, k) is indicated the partial derivations of log f(xi;α, c, k)
with respect to α, c and k. The log f(xi;α, c, k) of the MOEBXII distribution is

log f(xi;α, c, k) = log(αck)+(c−1) log(xi)−(k+1) log(1+xci )−2 log[1−(1−α)(1+xc)−k]
(2.12)

and its derivations with respect to α, c and k are

∂ log f(xi;α, c, k)

∂α
=

1

α
− 2

(1 + xci )
−k

1− (1− α) (1 + xci )
−k , (2.13)

∂ log f(xi;α, c, k)

∂c
=

1

c
+log xi−(k+1)

xci log (xi)

(1 + xci )
−2k(1−α)

xci (1 + xci )
−(k+1) log (xi)

1− (1− α) (1 + xci )
−k ,

(2.14)
∂ log f(xi;α, c, k)

∂k
=

1

k
− log (1 + xci )− 2(1− α)

(1 + xci )
−k log(1 + xci )

1− (1− α) (1 + xci )
−k . (2.15)

When these equations are written in place of equation (2.11) it can be seen that
there are no explicit forms for the MLq estimators of parameters α, c and k. How-
ever, these equations are rearranged as follows:

α̂ =


n∑
i=1

wiu1i

n∑
i=1

wi


−1

, ĉ =


n∑
i=1

wiu2i

n∑
i=1

wi


−1

, k̂ =


n∑
i=1

wiu3i

n∑
i=1

wi


−1

where

wi =

[
(αck)xc−1

i (1 + xci )
−(k+1)

[1− (1− α)(1 + xc)−k]2

](1−q)

,

u1i = 2
(1 + xci )

−k

1− (1− α) (1 + xci )
−k ,



MLQ ESTIMATION FOR MOEBXII 23

u2i = − log xi + (k + 1)
xci log (xi)

(1 + xci )
+ 2k(1− α)

xci (1 + xci )
−(k+1) log (xi)

1− (1− α) (1 + xci )
−k ,

and

u3i = log (1 + xci ) + 2(1− α)
(1 + xci )

−k log(1 + xci )

1− (1− α) (1 + xci )
−k .

As it is seen from the above equations the MLq estimates can only be obtained by
using numerical methods.

3. Simulation Study

In this simulation study, we consider the MOEBXII distribution when the sample
size n = 25, 50, 100. First, we generate data sets from the MOEBXII distribution
using the following parameter values (α, c, k)=(3, 1, 1), (3, 1, 2), (3, 2, 1), (3,
2, 2), (3, 3, 3), (5, 1, 1), (5, 1, 2), (5, 2, 1), and (5, 2, 2). We use inverse of
cumulative distribution function method to generate the data. We carry out two
different simulation scenarios with and without outliers. We add 4% outliers, to
show the performances of the MLq estimators under the presence of outliers. We
compare the estimators using MSE values calculated as

MSE
(
θ̂
)

=
1

1000

1000∑
i=1

(
θ̂i − θ

)2

equation where θ=α,c and k. We repeate each simulation scenario 1000 times. For
the robust estimators the tuning constants are taken as b1=1,345 and b2=3,5 for
Huber’s ρ and Tukey’s ρ functions, respectivelly.
The calculated MSE values for each case and each method are summarized in

Table 1-7.
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Table 1 The MSE values of estimations for n = 25 without outliers

parameter ML Huber Tukey MLq

α = 3 0.3452 0.0669 0.1382 0.0772
c = 1 0.1305 0.1999 0.2316 0.1485
k = 1 0.0755 0.0958 0.1006 0.1170
α = 3 0.1694 0.0729 0.1029 0.2320
c = 1 0.0489 0.1186 0.1549 0.0656
k = 2 0.1154 0.1244 0.0914 0.2099
α = 3 0.4775 0.1341 0.1374 0.0856
c = 2 0.2889 0.3690 0.4130 0.3386
k = 1 0.0682 0.1047 0.0920 0.1054
α = 3 0.2483 0.095 0.1537 0.0854
c = 2 0.1861 0.3447 0.3839 0.2252
k = 2 0.1153 0.2034 0.1910 0.1789
α = 3 0.3292 0.1869 0.2183 0.0832
c = 3 0.2523 0.4536 0.5261 0.3603
k = 3 0.1585 0.1802 0.3081 0.2875
α = 5 0.1806 0.1812 0.1934 0.1969
c = 1 0.1531 0.3500 0.3286 0.1567
k = 1 0.0777 0.3641 0.4020 0.0905
α = 5 0.0782 0.6678 0.7360 0.0868
c = 1 0.0671 0.1546 0.3173 0.0799
k = 2 0.1034 0.9243 0.9115 0.1293
α = 5 0.3200 0.2032 0.1769 0.3905
c = 2 0.2837 0.3826 0.4714 0.3971
k = 1 0.0735 0.2884 0.3603 0.0969
α = 5 0.2006 0.4720 0.6009 0.3891
c = 2 0.1983 0.3509 0.5652 0.2268
k = 2 0.0930 0.9028 0.9074 0.1193

In Table 1 we observe that, as expected the ML estimation generally gives smaller
MSE values than the other estimation methods when there is no outlier in data set.
Similar results can be observed from Table 2 and Table 3 for the larger sample sizes.
Considering the MLq estimators, it is seen that they have smaller MSE values than
the MSE values obtained from the M estimators for several simulation scenarios.
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Table 2 The MSE values of Estimations for n = 50 without outliers

parameter ML Huber Tukey MLq

α = 3 0.3137 0.0381 0.0579 0.1660
c = 1 0.0487 0.0975 0.1225 0.0559
k = 1 0.0464 0.0647 0.0714 0.0756
α = 3 0.1627 0.0624 0.0968 0.8071
c = 1 0.0267 0.0729 0.0760 0.0343
k = 2 0.0513 0.0953 0.0785 0.0369
α = 3 0.4070 0.0776 0.2079 0.7245
c = 2 0.2005 0.3308 0.3785 0.2111
k = 1 0.0459 0.0680 0.1163 0.0524
α = 3 0.2398 0.1054 0.1632 0.1868
c = 2 0.1024 0.3106 0.3436 0.1489
k = 2 0.0873 0.1727 0.1546 0.1564
α = 3 0.2032 0.1259 0.1765 0.2295
c = 3 0.1459 0.3531 0.3969 0.1811
k = 3 0.0942 0.2103 0.2564 0.2137
α = 5 0.1720 0.1228 0.0747 0.1303
c = 1 0.0793 0.2887 0.2643 0.0818
k = 1 0.0543 0.3529 0.3687 0.0744
α = 5 0.0828 0.6411 0.7622 0.1706
c = 1 0.0374 0.1250 0.2253 0.0478
k = 2 0.0680 0.9583 0.9501 0.1126
α = 5 0.2503 0.2275 0.1358 0.3112
c = 2 0.2254 0.4446 0.5319 0.2481
k = 1 0.0435 0.3351 0.3745 0.0512
α = 5 0.1992 0.6504 0.7152 0.3775
c = 2 0.1017 0.3216 0.5322 0.1144
k = 2 0.0694 0.9611 0.9458 0.1060
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Table 3 The MSE values of estimations for n = 100 without outliers

parameter ML Huber Tukey MLq

α = 3 0.4153 0.3535 0.3476 0.6458
c = 1 0.0276 0.0824 0.0892 0.0317
k = 1 0.0389 0.0582 0.0487 0.0516
α = 3 0.2275 0.0457 0.0825 0.1889
c = 1 0.0138 0.0602 0.0771 0.0216
k = 2 0.0462 0.0551 0.0592 0.1194
α = 3 0.4524 0.5477 0.1681 0.1372
c = 2 0.1018 0.2858 0.2966 0.1088
k = 1 0.0336 0.0574 0.0869 0.0461
α = 3 0.3040 0.1612 0.1095 0.1420
c = 2 0.0601 0.1919 0.1927 0.0735
k = 2 0.0519 0.1422 0.1255 0.0995
α = 3 0.1672 0.1656 0.2324 0.2268
c = 3 0.1045 0.4758 0.4858 0.1615
k = 3 0.0584 0.2141 0.3340 0.2093
α = 5 0.3012 0.1272 0.0977 0.3613
c = 1 0.0342 0.2601 0.1918 0.0371
k = 1 0.0283 0.3552 0.3571 0.0402
α = 5 0.1270 0.7229 0.7866 0.1623
c = 1 0.0133 0.1080 0.1235 0.0162
k = 2 0.0330 0.9778 0.9654 0.0634
α = 5 0.3221 0.2279 0.1512 0.3692
c = 2 0.1428 0.4749 0.5141 0.1510
k = 1 0.0327 0.3462 0.3651 0.0380
α = 5 0.1495 0.6411 0.7286 0.1660
c = 2 0.0390 0.3339 0.3970 0.0492
k = 2 0.0385 0.9640 0.9545 0.0662

It can be clearly seen that when n gets larger the MSE values for the MLq
estimators become very similar to the MSE values of the ML estimators.
In Tables 4-6 we display the MSE values for the outlier case. We can clearly

see that the performance of the ML estimators getting worse when there are some
outliers in data. On the other hand, M and the MLq estimators are not affected
from the outliers. It is observed that for most of the cases the MLq performs
better than M estimation method. However for the parameter α the best results
are obtained from M estimators, the second one is the MLq estimators and the
worst one is the ML. For the other two parameters the MLq is generally the best.
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Table 4 The MSE values of estimations for n = 25 with 4%outlier

parameter ML Huber Tukey MLq

α = 3 0.7489 0.0593 0.0622 0.0874
c = 1 0.1945 0.1409 0.1722 0.1360
k = 1 0.1107 0.1237 0.1202 0.0942
α = 3 0.7059 0.0830 0.1681 0.9232
c = 1 0.0826 0.0965 0.1287 0.0691
k = 2 0.3254 0.2627 0.1768 0.3216
α = 3 1.4529 0.0867 0.1221 0.9047
c = 2 0.4233 0.3223 0.3467 0.2813
k = 1 0.1485 0.0990 0.1276 0.0876
α = 3 1.1111 0.1009 0.2130 0.9902
c = 2 0.2293 0.1904 0.2919 0.1487
k = 2 0.4277 0.2306 0.2745 0.3320
α = 3 1.5382 0.1876 0.2885 0.9202
c = 3 1.0872 0.3918 0.2272 0.3201
k = 3 1.0919 0.2282 0.2100 0.7891
α = 5 0.6935 0.1157 0.1305 0.1924
c = 1 0.3365 0.3434 0.3270 0.2184
k = 1 0.1295 0.3749 0.4215 0.1092
α = 5 0.6185 0.7697 0.8332 0.7949
c = 1 0.0565 0.0645 0.2501 0.0573
k = 2 0.1486 0.9690 0.9780 0.1611
α = 5 0.9610 0.2171 0.1494 0.9461
c = 2 0.4329 0.3401 0.4641 0.3565
k = 1 0.0920 0.3302 0.4140 0.0724
α = 5 0.8352 0.7546 0.8592 0.9907
c = 2 0.2941 0.1993 0.4597 0.2185
k = 2 0.1745 0.9627 0.9788 0.1768
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Table 5 The MSE values of estimations for n = 50 with 4%outlier

parameter ML Huber Tukey MLq

α = 3 0.9303 0.0171 0.0535 0.8253
c = 1 0.0583 0.0634 0.0925 0.0471
k = 1 0.0918 0.0985 0.1040 0.0724
α = 3 0.8486 0.0565 0.1262 0.6551
c = 1 0.0417 0.0425 0.0652 0.0203
k = 2 0.2677 0.1759 0.1431 0.2709
α = 3 1.5055 0.0596 0.1352 0.9860
c = 2 0.2480 0.2026 0.2306 0.1723
k = 1 0.1516 0.1026 0.1117 0.1082
α = 3 1.0910 0.0810 0.1648 0.9737
c = 2 0.1585 0.1140 0.1685 0.0671
k = 2 0.4210 0.2257 0.2414 0.4241
α = 3 1.6377 0.1504 0.3418 0.8956
c = 3 1.1001 0.4012 0.2323 0.5030
k = 3 1.1747 0.2207 0.2436 0.9830
α = 5 0.8045 0.0985 0.1079 0.6132
c = 1 0.0869 0.2971 0.2235 0.0840
k = 1 0.0732 0.4027 0.4287 0.0665
α = 5 0.9942 0.8671 0.9251 0.9813
c = 1 0.0354 0.0442 0.1458 0.0240
k = 2 0.1528 0.9921 0.9921 0.1070
α = 5 1.2138 0.2063 0.1672 0.9699
c = 2 0.3928 0.3536 0.4320 0.2944
k = 1 0.0959 0.3580 0.4193 0.0809
α = 5 1.1813 0.8155 0.9377 0.9334
c = 2 0.2029 0.1543 0.4593 0.1332
k = 2 0.2210 0.9854 0.9968 0.2159
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Table 6 The MSE values of estimations for n = 100 with 4%outlier
parameter ML Huber Tukey MLq

α = 3 1.4514 0.0148 0.0407 0.9564
c = 1 0.0473 0.0601 0.0737 0.0357
k = 1 0.1355 0.1087 0.0914 0.0977
α = 3 1.5395 0.0584 0.1772 0.9886
c = 1 0.0236 0.0233 0.0301 0.0085
k = 2 0.5007 0.1676 0.1438 0.3297
α = 3 1.7153 0.0801 0.1164 0.9999
c = 2 0.2369 0.2297 0.2152 0.1547
k = 1 0.1796 0.1050 0.1111 0.1265
α = 3 1.7178 0.0486 0.1949 0.9719
c = 2 0.1165 0.1184 0.1338 0.0601
k = 2 0.6832 0.2235 0.2048 0.4849
α = 3 1.9561 0.1498 0.3502 0.8962
c = 3 0.8292 0.2809 0.1503 0.7617
k = 3 1.6878 0.1453 0.1749 0.9762
α = 5 1.1048 0.1095 0.0751 0.9545
c = 1 0.0508 0.2425 0.1662 0.0438
k = 1 0.0609 0.3916 0.4028 0.0541
α = 5 1.2514 0.9246 0.9546 0.9902
c = 1 0.0280 0.0495 0.1389 0.0175
k = 2 0.1657 0.9937 0.9974 0.1436
α = 5 1.5288 0.1684 0.1349 0.9978
c = 2 0.1333 0.3620 0.4251 0.1136
k = 1 0.0705 0.3712 0.4043 0.0589
α = 5 1.5110 0.9092 0.9868 0.9985
c = 2 0.1463 0.1961 0.3593 0.1006
k = 2 0.2376 0.9976 0.9997 0.1925

To sum up the ML estimation method have better performance among the other
methods when there are no outliers in the data according to the MSE values.
However, the robust methods should be prefered if there are some outliers. Between
the robust methods the MLq has better performance and since it is very similar to
the ML, the MLq should be used instead of other robust methods.
Table 1-6 show the MSE values for the case α > 1 to compare the MLq estimation

with M estimation. Note that M estimation for the MOEBXII distribution is not
defined for α < 1. This is because for MOEBXII distribution, we have log(α − 1)
in Q function given in equation (2.5). On the other hand, we do not have this
problem in MLq estimation. To compare the performance of the ML and the MLq
estimators for the case α < 1 we run a small simulation study with and without
outlier. Table 7 gives the results for this simulation study.
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Table 7 The MSE values of Estimations for α < 1
without outlier 4% outlier

n parameter ML MLq ML MLq

α = 0.8 0.1810 0.3929 0.4532 0.3261
25 c = 0.5 0.0174 0.0229 0.1976 0.0270

k = 0.8 0.0970 0.2574 0.0953 0.0178
α = 0.8 0.1680 0.3007 0.1730 0.0246

50 c = 0.5 0.0075 0.0092 0.1162 0.0132
k = 0.8 0.0792 0.1452 0.1299 0.0143
α = 0.8 0.1390 0.2128 0.2040 0.1763

100 c = 0.5 0.0045 0.0051 0.0065 0.0064
k = 0.8 0.0567 0.0870 0.1530 0.1485
α = 0.8 0.0849 0.2813 0.1217 0.0263

25 c = 0.5 0.0116 0.0206 0.0137 0.0086
k = 3 0.1080 0.6843 0.8337 0.2187
α = 0.8 0.0706 0.2381 0.2143 0.1625

50 c = 0.5 0.0046 0.0071 0.0078 0.0045
k = 3 0.1260 0.6416 0.2622 0.1416
α = 0.8 0.0729 0.2220 0.1038 0.0744

100 c = 0.5 0.0030 0.0048 0.0084 0.0024
k = 3 0.1475 0.5253 0.8342 0.5804
α = 0.8 0.1788 0.3274 0.2133 0.2091

25 c = 3 0.1864 0.3923 0.5838 0.5189
k = 0.5 0.0374 0.0640 0.0767 0.0758
α = 0.8 0.1616 0.2645 0.2871 0.2713

50 c = 3 0.1823 0.2855 0.4097 0.2978
k = 0.5 0.0340 0.0542 0.0996 0.0696
α = 0.8 0.1254 0.1658 0.3407 0.3260

100 c = 3 0.1310 0.1653 0.3375 0.2027
k = 0.5 0.0242 0.0302 0.1194 0.1189

According to Table 7, MSE values of ML estimation for different values of pa-
rameters smaller than those of MLq when the data set has no outlier. However, if
there are some outliers in the data the MLq estimation gives smaller MSE values
than the ML for almost all the cases. These results show that the MLq estimation
method produces better estimators than the ML estimation method in the case of
outliers.

4. Real Data Example

Global warming is a vital issue in recent years and the major reason for it
is the man-made greenhouse gas emissions which mainly include carbon dioxide
(CO2), methane (CH4), and nitrous oxide (N20). In this example we will use the
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CO2 emission data for 34 countries [5]. This data set is obtained from Eurostats
database. The data were recorded for the year 2015. The histogram of the data set,
which is given in Figure 1, shows moderated skewness to the right and includes one
outlier. Therefore, skew distributions would be plausible to model this data set. In
this paper, we will use the MOEBXII distribution to model this data set. There
are two reasons to use the MOEBXII distribution. One is the data has positive
support which is convenient to use the MOEBXII distribution and the other is it
is very flexible to catch the shape of the data.
We estimate the unknown parameters of the distribution using the ML,the MLq

and robust M estimation methods proposed by [15]. The results are given in Table
8. The fitted densities obtained from the ML, the MLq and robust estimates are
shown in Figure 1.

Table 8 Parameter Estimations for the CO2emissions
ML MLq Huber Tukey

α̂ 18.5395 20.8525 20.8976 20.8975
ĉ 7.0058 4.3334 4.2784 4.2784
k̂ 0.5310 0.7497 0.6948 0.6997

From Figure 1, we observed that the best fit is obtained from the MLq method.
It is followed by the fitted density obtained from Huber M estimates. While the
ML method gives overfitted density, the robust estimates obtained from Tukey ρ
function present underestimated fit.

Figure 1. Histogram of the CO2 emmisions and pdf fits with
estimated parameters
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5. Conclusion

MOEBXII distribution would be a good alternative to the distributions that are
used in economics, reliability, survival analysis and so on. The parameters of this
distribution have been estimated using ML and Bayesian methods [2]. Recently,
robust methods have also been used to estimate the parameters [15]. ML meth-
ods are very sensitive to the outliers. Therefore robust methods should be used
to estimate the parameters. However, since robust methods used in [15] cannot
be compitable for the case α < 1, alternative robust methods are needed to es-
timate the parameters. In this paper, we have used the MLq estimation method
to estimate the parameters of the MOEBXII distribution. We have carried out
a small simulation study and a real data example to show that the MLq method
could be a good alternative estimation method to the existing ones. Our simulation
results also reveal that the MLq estimates are better than ML in most simulation
scenarios and it is compatable with the robust methods. Further, unlike the other
robust methods the MLq could also be used for the case α < 1. Concerning the real
data example, we observe that the best fit is obtained from the MLq method. To
sum up, the MLq estimation method could be used to estimate the parameters of
MOEBXII distribution and the estimators would be robust to the outliers in the
data.
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