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Quantum statistical effects on fusion dynamics of heavy ions
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To describe the fusion of two very heavy nuclei at near barrier energies, a generalized Langevin approach
is proposed. The approach incorporates the quantum statistical fluctuations in accordance with the fluctuation
and dissipation theorem. It is illustrated that the quantum statistical effects introduce an enhancement of the
formation of a compound nucleus, though the quantum enhancement is somewhat less pronounced as indicated
in the previous calculations.
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I. INTRODUCTION

In recent years, there has been a great deal of interest in
the synthesis of superheavy elements by means of heavy-
ion fusion at near-barrier energies [1]. Owing to very low
production probabilities, investigation of heavy-ion fusion
reactions remains a challenging task both experimentally and
theoretically. Theoretical investigations are mostly based on
transport theory in which heavy-ion fusion is viewed as a
diffusion process [2–5]. During the approach phase, a part of
the kinetic energy of the relative motion dissipates into intrinsic
degrees of freedom, colliding ions overcome the Coulomb
barrier, and a sticking configuration is formed. Subsequently,
the system evolves inward over the conditional saddle to form
a spherical compound nucleus. Heavy-ion fusion is described
in terms of a few relevant variables, which evolve according
to a Langevin dynamics as in a typical diffusion process. In
most of these investigations quantum statistical effects are
ignored and a classical treatment is employed, in which friction
and diffusion properties are related through the classical
fluctuation-dissipation theorem. Since superheavy elements
are stabilized by the shell correction energy, they should be
synthesized at reasonably low energies, which corresponds
to nuclear temperatures of the order of T = 0.5–1.0 MeV.
However, the curvature of the conditional saddle is also of
the order of h̄� = 1.0 MeV. As a result, it is expected that
quantum statistical effects play an important role in the forma-
tion of a compound nucleus by diffusion along the conditional
potential barrier [6–8]. In a recent work, using the density
matrix formalism, we derived a generalized Fokker-Planck
equation for the distribution function of relevant collective
variables with non-Markovian transport coefficients and we
illustrated the quantum statistical effects on the formation of
a compound nucleus at low temperatures [9,10]. Here, we
consider the same problem but follow a different description
based on a generalized Langevin approach. By projection
on the collective space, it is possible to deduce stochastic
equations of motion for collective variables. The friction term
involves a memory effect and the random force acts as a
correlated noise; these are related according to the quan-
tum fluctuation-dissipation theorem [11,12]. As a result, the

quantum statistical fluctuations are incorporated into the
description and the approach is valid at all temperatures. In
principle, the Langevin approach presented here is equivalent
to the density matrix formalism; however, it has certain
advantages over the description provided by the Fokker-Planck
equation [13]. For example, in realistic situations, numerical
simulations of the Langevin equation require much less
numerical effort than that needed to solve the Fokker-Planck
equation. Furthermore, diffusion coefficients presented here
are modified by the friction mechanism, which was not
considered in the density matrix approach [9,10]. In Sec. II,
we derive generalized Langevin equations for the relevant
collective variables. In Sec. III, we present an analysis of
the Langevin equation. In Sec. IV, to illustrate the effect of
quantum statistical fluctuations, we present calculations to
describe the heavy-ion fusion reactions at low temperatures.
Finally, we give conclusions in Sec. V.

II. GENERALIZED LANGEVIN EQUATIONS

It is possible to derive transport equation for the entire
dynamics of the heavy-ion fusion process, starting from the
entrance channel until formation of a compound nucleus. Here,
we want to investigate the influence of quantum statistical
fluctuations on the formation probability of a compound
nucleus at near-barrier energies. For this purpose, we consider
a part of the dynamics, namely, evolution of the system along
the conditional saddle from the sticking configuration until the
formation of a compound nucleus. For simplicity, we describe
the evolution in terms of a single collective variable—the
elongation variable q, which approximately corresponds to
the relative distance between the colliding ions. We consider
a model in which evolution of the system is described by a
Hamiltonian of the form

H = H0 + Hcoll + Vcoup, (1)

where H0,Hcoll, and Vcoup represent the Hamiltonian of the
intrinsic nucleonic degrees of freedom, the Hamiltonian of
the collective variable, and the coupling interaction of the
collective variable with the intrinsic nucleonic degrees of
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freedom, respectively. For simplicity, we consider a har-
monic form for the collective Hamiltonian Hcoll = p2/2M ±
M�2q2/2, where M is the mass parameter of the collective
variable and M�2 denotes the magnitude of the curvature
parameter of the potential energy; a positive sign stands for
a parabolic potential well and a negative sign for a parabolic
potential barrier. Furthermore, we assume that the coupling
Hamiltonian has a linear form, Vcoup = qF . The classical
equation of motion for the collective variable can be deduced
from dp/dt = −(dH/dq), where (· · ·) denotes an average
over the intrinsic degrees of freedom, to give

d

dt
q(t) = 1

M
p(t) and

d

dt
p(t) ± M�2q(t) = −Tr(Fρ).

(2)

Here, the quantity on the right-hand side denotes the force of
the intrinsic degrees of freedom on the collective motion. We
consider the case where the coupling F is a one-body operator.
We then need only the single-particle density matrix ρ of the
intrinsic degrees of freedom to calculate the force. As we
discuss in the following, the temporal evolution of the single-
particle density matrix exhibits a stochastic behavior. As a
result, the intrinsic force has a fluctuating part superposed on its
average value. Here, we find it more convenient to calculate the
fluctuating part of force, which is determined by the fluctuating
part of the single-particle density matrix δρ(t) = ρ(t) − ρ̄(t),
where the bar means taking the ensemble average. If we assume
that the fluctuations are small, δρ(t) can be determined by a
linearized transport equation [14] around the average ρ̄(t),

ih̄
∂

∂t
δρ(t) − [h̄(t), δρ(t)] − [δq(t)F, ρ̄(t)] = 0, (3)

where h̄(t) = h + q̄(t)F, h is the Hartree-Fock Hamiltonian
of the separated nuclei, and δq(t) = q(t) − q̄(t) denotes the
fluctuation of the collective variable around its average value
q̄(t). The ensemble average value of the density matrix is
determined by

ih̄
∂

∂t
ρ̄(t) − [h̄(t), ρ̄(t)] = 0. (4)

For simplicity of derivation, we neglect the collision term
on the right-hand side of Eqs. (3) and (4) [15–17]; however,
subsequently, we incorporate the damping width of single-
particle states. Starting from an initial state δρ(s) at some time
s, the formal solution of Eq. (3) can be given as

δρ(t) = − i

h̄

∫ t

s

dt ′δq(t ′)[G(t, t ′)FG†(t, t ′), ρ̄(t)]

+ G(t, s)δρ(s)G†(t, s), (5)

where the first term describes the effects of the perturbation
during the time interval t − s with G(t, s) = exp[−(i/h̄)∫ t

s
dt ′h̄(t ′)] ≈ exp[−(i/h̄)(t − s)h̄(t)] as the mean-field propa-

gator (i.e., the propagator in the absence of thermal fluctuation)
and the second term represents the propagation of the initial
fluctuations δρ(s) of the intrinsic degrees of freedom during
the time interval from s to t. Here, the initial time s does not
represent the remote past, but rather it is sufficiently close to
the time t, so that the time interval is much shorter than the
relaxation time of the intrinsic degrees of freedom, t − s � τrel

hence justifying the neglect of collision-term correlations in
the description of Eq. (5). In this case, the effect of correlations
enters through the initial fluctuation term. Furthermore, we
assume that the collective motion is sufficiently slow so
that the intrinsic degrees of freedom are close to those of
local equilibrium for each value of the collective variable.
To evaluate the matrix elements of the fluctuating part
of the density operator based on Eq. (5), we approximate
the average density matrix in terms of the instantaneous
single-particle wave functions as ρ̄(t) ≈ ∑ |φl(t)〉nl〈φl(t)|,
where we neglect the off-diagonal elements. In this expression,
the instantaneous wave functions φl(t) = φl[q(t)] are deter-
mined from (h + qF )|φl(q)〉 = εl(q)|φl(q)〉 for each value of
the collective variable q, and ni = 1/[exp[(εi − εF )/T ] + 1]
denotes the Fermi-Dirac occupation factor at a temperature T.
Employing the instantaneous representation, we can express
the matrix elements of fluctuations as

δρij (t) = − i

h̄

∫ t

s

dt ′δq(t ′)Gij (t, t ′)〈i|F |j 〉(nj − ni)

+ Gij (t, s)δρij (s) (6)

with Gij (t, s) = exp[−i(t − s)(εi − εj )/h̄]. It is not possible
to determine the detailed structure of initial fluctuations of
the intrinsic degrees of freedom. Therefore, it is plausible to
assume that each matrix element of δρ(s) is a Gaussian random
quantity with zero mean (〈i|δρ|j 〉 = 0) and a second moment.
In accordance with the fluctuation-dissipation relation of the
single-particle density matrix, we specify the second moment
of δρ(s) as

〈i|δρ|j 〉〈j ′|δρ|i ′〉 = δii ′δjj ′ 1
2 [ni(1 − nj ) + nj (1 − ni)]. (7)

In the special case of diagonal elements this formula gives
the known result for fluctuations of occupation numbers,
〈i|δρ|i〉〈i|δρ|i〉 = ni(1 − ni) [18]. Substituting Eq. (5) into
the right-hand side of Eq. (2), we find a generalized Langevin
equation for the fluctuations of the collective variable,

d

dt
δp(t) ± M�2δq(t) =

∫ t

s

dt ′γ (t − t ′) δq(t ′) + ξ (t), (8)

where the memory kernel in the retarded force is given by

γ (t − t ′) = i

h̄

|〈i|F |j 〉|2Gji(t, t

′)[ni(1 − nj ) − nj (1 − ni)]

(9)
and the random force term is

ξ (t) = −
〈i|F |j 〉Gji(t, s)〈j |δρ|i〉. (10)

Using Eq. (7), we can express the autocorrelation function
of the random force as

ξ (t)ξ (t ′) = 
|〈i|F |j 〉|2Gij (t, t ′) 1
2 [ni(1 − nj ) + nj (1 − ni)].

(11)

Dissipation and fluctuation aspects of dynamics are closely
connected to each other; the similarity of expressions for the
correlation function and the memory kernel reflects this fact.
If the decay time of the memory kernel is sufficiently short, we
can explicitly incorporate the memory effect into the retarded
force in Eq. (8). For evolution over a short time interval from
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t ′ to t, by neglecting the right-hand side of Eq. (8), we find the
following relation:

δq(t ′) ≈ C(t − t ′)δq(t) − S(t − t ′)δp(t). (12)

For a parabolic potential well, propagators C(t − t ′) and
S(t − t ′) are given by

C(t − t ′) = cos �(t − t ′) and S(t − t ′) = 1

M�
sin �(t − t ′).

(13)

In contrast, for a parabolic potential barrier, these propagators
are given by

C(t − t ′) = cosh �(t − t ′)
and

S(t − t ′) = 1

M�
sinh �(t − t ′). (14)

The first term in Eq. (12), involving δq(t), introduces a shift in
the curvature parameter of the potential. Here, we neglect this
effect and substitute the second term on the right-hand side of
Eq. (12) into the right-hand side of Eq. (8). Note that, since the
fluctuations are linear, the same equation as Eq. (8), but without
the last term on the right-hand side, holds for the average
evolution by replacing δp(t) and δq(t) with p̄(t) and q̄(t),
respectively. Therefore, combining the average evolution with
the fluctuations, we obtain a generalized Langevin equation
for the actual variables, p(t) = p̄(t) + δp(t) and q(t) = q̄(t) +
δq(t):

d

dt
p(t) ± M�2q(t) = −βp(t) + ξ (t), (15)

where the reduced friction coefficient is given by

β = i

h̄

∫ t−s

0
dτ
|〈i|F |j 〉|2e− i

h̄
τ (εj −εi )ni(1 − nj )S(τ ) + c.c..

(16)

Substituting Eqs. (13) and (14) for S(τ ), we find, for the friction
coefficient for a parabolic well,

β = − 1

2iM�

|〈i|F |j 〉|2

[
e− i

h̄
(t−s)(εj −εi−h̄�−iη) − 1

εj − εi − h̄� − iη

− e− i
h̄

(t−s)(εj −εi+h̄�−iη) − 1

εj − εi + h̄� − iη

]
ni(1 − nj ) + c.c. (17)

and, for a parabolic barrier,

β = + 1

2M�

|〈i|F |j 〉|2

[
e− i

h̄
(t−s)(εj −εi−ih̄�−iη) − 1

εj − εi − ih̄� − iη

− e− i
h̄

(t−s)(εj −εi+ih̄�−iη) − 1

εj − εi + ih̄� − iη

]
ni(1 − nj ) + c.c.. (18)

In obtaining these results, we include the damping width η

of the single-particle states into the propagator in Eq. (16)
[19]. In further evaluation of the friction coefficients, we
neglect the time-dependent terms in Eqs. (17) and (18) for
the following reason: The dominant contributions to the
friction coefficient arise from the coupling matrix element
over an energy interval of the order of major shell spacing,

εj − εi =  ≈ 10 MeV, which is much larger than typical
values of collective frequency we consider here, (h̄� ≈
1.0 MeV). If the single-particle spectrum is sufficiently dense,
the summations over the single-particle states can be con-
verted to energy integrals. As a result, exponential factors in
Eqs. (17) and (18) damp out over a time interval of the order
of τ0 = h̄/. Furthermore, in particular for low-frequency
collective motion, h̄� � η, these exponential factors damp
out even over a shorter time scale as a result of damping
of the single-particle states. Therefore, for a sufficiently long
time interval, t − s � τ0, neglecting time-dependent terms,
we have, for a parabolic well,

β = 
|〈i|F |j 〉|2 1

M�

[
η

(εj − εi − h̄�)2 + η2

− η

(εj − εi + h̄�)2 + η2

]
ni(1 − nj ) (19)

and, for a parabolic barrier,

β = 
|〈i|F |j 〉|2 1

M�

[
εj − εi

(εj − εi)2 + (h̄� − η)2

− εj − εi

(εj − εi)2 + (h̄� + η)2

]
ni(1 − nj ). (20)

As seen from these results, for finite �, the friction coefficient
has different expressions around a well and a barrier. However,
in the limit � → 0, it can be easily seen that these expressions
become identical, converging to what is known as the one-
body friction formula. We call this limiting value the classical
friction coefficient and denote it as β0. We introduce the Fourier
transform of the correlation function of the random force [20],

ξ (t)ξ (t ′) =
∫ +∞

−∞

dω

2π
e−iω(t−t ′) h̄ω

2T
coth

h̄ω

2T
2D(ω), (21)

where

D(ω) = T 
|〈i|F |j 〉|2 1

ω

[
η

(εj − εi − h̄ω)2 + η2

− η

(εj − εi + h̄ω)2 + η2

]
ni(1 − nj ). (22)

At low frequencies, D(ω) is just D(ω → 0) = D0 = MTβ0,
the classical diffusion coefficient. However, the high-
frequency behavior is restricted by the magnitude of the
coupling matrix elements. If the single-particle spectrum is
sufficiently dense, the magnitude of coupling matrix elements
must decrease as a function of energy difference, mainly
as a result of the mismatch of the overlap of the wave
functions. We can represent this behavior by a Gaussian
or a Lorentzian function (〈i|F |j 〉2 ∝ exp[−(εj − εi)2/22]
or ∝ 1/[1 + (εj − εi)2/22]). Furthermore, because of the
Lorentzian factors in Eq. (22), we can replace the energy
difference εj − εi with the frequency h̄ω and approximately
describe the frequency dependence of the diffusion coefficient
as D(ω) = D0 exp[−(h̄ω)2/22], where we have taken the
Gaussian for the frequency spectrum. As a result, the correla-
tion function-(21) of the random force can be expressed as

ξ (t)ξ (t ′) = 2D0χ (t − t ′), (23)
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FIG. 1. The correlation function plotted vs time for  = 15 MeV.

where

χ (t − t ′) =
∫ +∞

−∞

dω

2π
e−iω(t−t ′) h̄ω

2T
coth

h̄ω

2T

× exp[−(h̄ω)2/22]. (24)

The correlation function is characterized by two different
parameters, the cutoff energy and temperature. Figure 1 shows
the correlation function versus time at different temperatures
T = 0.5, 1.0, and 5.0 MeV. The results presented in this work
are not very sensitive to the cutoff energy over a range of values
 = 10–20 MeV. Therefore, in this figure and all others we
employ  = 15 MeV for the cutoff energy. At relatively high
temperature (h̄ω � 2T ), (h̄ω/2T ) coth(h̄ω/2T ) ≈ 1, and the
correlation function reduces to its classical form

χ0(t − t ′) =
∫ +∞

−∞

dω

2π
e−iω(t−t ′) exp

[
− (h̄ω)2

22

]

= 1√
2πτ0

exp
[−(t − t ′)2

/
2τ 2

0

]
. (25)

For sufficiently short decay time τ0, it can be approximated by
a delta function, χ0(t − t ′) → δ(t − t ′), and as a result at high
temperatures, the temporal evolution becomes Markovian and
the random force ξ (t) acts like white noise. However, as seen
from the figure, in the quantal regime (i.e., at low temperatures
where h̄� � 2T ), we are faced with a stochastic evolution with
a correlated noise [11,12].

III. ANALYSIS OF LANGEVIN EQUATION

To obtain the joint probability distribution function
P (q, p, t) of the collective variable and its conjugate momen-
tum (q, p) by numerical simulation of the Langevin equation,
in general, we need to generate a sufficiently large ensemble
of trajectories. Since we have a correlated noise problem,
we cannot use the standard methods [17,21,22] and we need
to adopt suitable algorithms for numerical simulations [23].
However, in the situation that we consider here, the solution
of the Langevin equation (15) can be given analytically [13].
Since the equation is linear with a Gaussian random source,
the probability distribution P (q, p, t) of collective variables
is also Gaussian, which is determined by the mean values

q̄(t), p̄(t) and the variances σqq(t) = δq(t)δq(t), σqp(t) =
δq(t)δp(t), σpp(t) = δp(t)δp(t) of collective variables ac-
cording to

P (q, p, t) = 1

2πX
exp

{
− 1

2X2
[(q − q̄)2σ̃qq

+ 2(q − q̄)(p − p̄)σ̃qp + (p − p̄)2σ̃pp]

}
, (26)

where X2 = σqqσpp − σ 2
qp and σ̃ij is the inverse of the 2 × 2

matrix (σij ) with elements σ11 = σqq, σ12 = σqp, σ21 = σpq ,
and σ22 = σpp. The mean values of collective variables
q̄(t), p̄(t) are determined by the classical equations of motion,

d

dt
q̄(t) = 1

M
p̄(t) and

d

dt
p̄(t) ± M�2q̄(t) = −βp̄(t).

(27)

Equations for variances are deduced from the Langevin
equations for the fluctuating quantities δq(t) = q(t) − q̄(t) and
δp(t) = p(t) − p̄(t),

d

dt
δq(t) = 1

M
δp(t)

and
d

dt
δp(t) ± M�2δq(t) = −βδp(t) + ξ (t). (28)

Multiplying both sides of these equations by δq(t), δp(t) and
performing ensemble averaging, we find

d

dt
σqq(t) = 2

M
σqp(t), (29)

d

dt
σqp(t) ± M�2σqq(t) = 1

M
σpp(t) − βσqp(t) + Dqp(t),

(30)
d

dt
σpp(t) ± 2M�2σqp(t) = −2βσpp(t) + 2Dpp(t), (31)

where Dpp(t) = δp(t)ξ (t) and Dqp(t) = δq(t)ξ (t) denote the
momentum and mixed diffusion coefficients, respectively.
To evaluate the diffusion coefficients, we need to calculate
the dynamical fluctuations of collective variables in terms
of the random force. This is carried out in the Appendix. Using
the results for δp(t) = ∫ t

0 dt ′Q(t − t ′)ξ (t ′) and from (A5) and
(A6), we can express the diffusion coefficients in terms of the
correlation function of the random force as

Dpp(t) =
∫ t

0
dt ′Q(t − t ′) ξ (t ′)ξ (t) = 2D0

∫ t

0
ds Q(s)χ (s)

(32)
and

Dqp(t) =
∫ t

0
dt ′S(t − t ′) ξ (t ′)ξ (t) = 2D0

∫ t

0
ds S(s)χ (s).

(33)

In these expressions, the initial time is taken to be zero for con-
venience (t0 = 0) and the propagators Q(s) and S(s) associated
with collective variables are given by (A7) and (A8) in the
Appendix. At sufficiently high temperatures, the correlation
function χ (s) can be approximated by a delta function, and
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FIG. 2. The momentum diffusion coefficient, in units of classical
diffusion coefficient, plotted vs time for  = 15 MeV.

consequently, the momentum diffusion coefficient is time inde-
pendent and takes its classical value, Dpp = D0; furthermore,
the mixed diffusion coefficient vanishes (Dqp = 0). The mixed
diffusion coefficient is a genuine non-Markovian term, and it
is absent in the Markovian limit. At low temperatures, owing
to the non-Markovian behavior of the correlation function, the
diffusion coefficients become time dependent and their magni-
tudes are strongly modified by quantum statistical fluctuations.
We also note that the modified frequency � =

√
�2 + (β/2)2

enters in propagators Q(s) and S(s). The typical values
of frequency parameter, h̄� ≈ 1.0 MeV, and the magnitude
of the reduced friction coefficient, h̄β/2 ≈ 1.7 MeV, are
comparable. As a result, the friction coefficient introduces a
sizable modification to the diffusion coefficients, which was
not incorporated in the previous investigation [9,10]. Figures 2
and 3 show the diffusion coefficients in units of D0(i.e.,
Dpp/D0 and Dqp/D0) as a function of time for different values
of temperature (T = 0.5, 1.0, and 5.0 MeV). To illustrate the
effect of friction on the diffusion coefficients, we calculate the
diffusion coefficients by replacing � with � in the propagators
Q(s) and S(s). Figures 4 and 5 compare two different values
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of diffusion coefficients Dpp/D0 and Dqp/D0 calculated with
� and � as a function of time at temperature T = 1.0 MeV.
The variances σqq, σqp, and σpp can be determined by solving
the coupled differential Eqs. (29), (30), and (31). However,
it is much easier to obtain these variances directly from the
Langevin equation (15) with the help of a one-sided Fourier
transform [18], as shown in the Appendix.

IV. QUANTUM STATISTICAL EFFECTS ON DIFFUSION
ALONG CONDITIONAL SADDLE TOWARD FUSION

In this section, we apply the generalized Langevin approach
to investigate the influence of quantum statistical fluctuations
on diffusion along the fusion barrier (i.e., the formation proba-
bility Pf (t) of a compound nucleus). When the conditional
saddle, that is, the inner fusion barrier, is approximately
represented by an inverted parabola, the formation probability,
that is, the probability to cross the saddle point, can be
calculated analytically in terms of the distribution function
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FIG. 5. The mixed diffusion coefficient, in units of classical
diffusion coefficient, plotted vs time for  = 15 MeV and T =
1.0 MeV. The cases with and without friction are compared.
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FIG. 6. The formation probability plotted vs initial kinetic energy
minus barrier height. The result of the classical diffusion approach
is compared with that of the quantum diffusion approach for  =
15 MeV.

of the elongation parameter q as [5,24,25]

Pf (t) =
∫ ∞

0
dq

1√
2πσqq(t)

exp

{
− [q − q̄(t)]2

2σqq(t)

}

= 1

2
erfc

[
− q̄(t)√

2σqq(t)

]
, (34)

where q̄(t) and σqq(t) are the mean value and the variance of
the elongation parameter, respectively, and are given by (A10)
and (A11) in the Appendix. In these expressions, (q̄0, p̄0) are
the mean values of elongation parameter and its conjugate
momentum, and (σq0, σp0) are the associated variances at the
initial configuration. As already stated, during the approach
phase of the collision, the system overcomes the Coulomb
barrier and some of the initial kinetic energy is dissipated into
internal excitations and a sticking configuration is formed. The
quantities (q̄0, p̄0) denote the average values of the elongation
parameter and its momentum at the sticking configuration. In
the second stage of the process, the shape of the system evolves
from a sticking dinuclear configuration toward formation
of a spherical compound nucleus or reseparates again. The
asymptotic value Pf (t → ∞) gives the transmission proba-
bility from a dinuclear configuration to compound nucleus. To
compare the results with our previous calculations [10], we
consider collision of 48Ca and 238U nuclei and adopt the same
values for the reduced friction coefficient (β = 5 × 1021 s−1)
and the curvature parameter of the conditional saddle (h̄� =
1.0 MeV). We choose the initial position q0 to make the height
of the conditional saddle 4.0 MeV and neglect dispersion, [i.e.,
(σq0, σp0)] in the initial configuration. In the classical limit, the
variance σqq(t) of the elongation parameter has a analytical
expression given by (A14), whereas in the quantum limit it
is given by (A18) and involves a one-dimensional numerical
integration over the frequency ω. Figure 6 shows the formation
probability Pf (t → ∞) of the compound nucleus as a function
of the initial kinetic energy K0 = p̄2

0/2M relative to the fusion
barrier VB at temperatures T = 0.5, 1.0, and 5.0 MeV. These

results, which are not very sensitive to the cutoff factor ,
are presented for  = 15 MeV. Solid lines and dashed lines
show the quantum and the classical calculations, respectively.
At low temperatures, the quantum-statistical fluctuations give
rise to an enhancement of the formation probability, which
is relevant to synthesis of superheavy elements by heavy-ion
fusion reactions. The quantum-enhancement is slightly less
pronounced than that in the previous calculations [10]. The
difference arises from the fact that in previous calculations
the mixed diffusion coefficient Dqp, which is a genuine non-
Markovian term, is neglected and the momentum diffusion
coefficient Dpp is calculated with the unperturbed frequency
�, rather than �.

V. CONCLUSIONS

For several years, considerable effort has been directed
toward synthesizing superheavy elements by heavy-ion fusion
at near-barrier energies. Even though the reaction mechanism
of heavy-ion fusion is not well understood, in most theoretical
descriptions fusion is viewed as a diffusion process, which
can be described by a Fokker-Planck approach or a stochastic
Langevin approach [2–5,24,25]. In these descriptions quantum
statistical effects are ignored and a classical treatment is
employed. In a recent work, we introduced a description
based on a generalized Fokker-Planck approach, which in-
corporates quantum effects through non-Markovian transport
coefficients [9,10]. In the present work, we follow a different
description based on a generalized Langevin approach. The
friction term and the random force both involve memory
effects and they are related to each other in accordance
with the fluctuation-dissipation theorem. As a result, quantum
statistical fluctuations are incorporated into the description. In
principle, both approaches provide an equivalent description,
however, the Langevin approach has certain advantages in
practical applications. In general, for a complex potential
energy surface, it is much easier to carry out simulations of the
Langevin equation than to solve the Fokker-Planck equation.
Furthermore, diffusion coefficients presented here are strongly
modified by the friction mechanism, which was not considered
in the Fokker-Planck approach [10]. In this work, we consider
a simple model in which the fusion barrier is represented by an
inverted parabola. In this case, the joint distribution function of
the collective variable and the conjugate momentum becomes
a Gaussian, and the fusion probability can be given in an
analytical form. Calculations illustrate that quantum statistical
effects enhance the fusion probability at low temperatures.
However, the enhancement is somewhat less pronounced
than that reported in the previous investigation [10]. For a
realistic potential energy surface, an analytical solution is not
possible and the distribution function of collective variables
should be constructed by generating a sufficient number of
events of the generalized Langevin equation. Since the random
force does not have a white-noise distribution, we cannot
use standard methods for numerical simulations [21,22].
Therefore, it is necessary to develop suitable algorithms for
simulations of the Langevin equation with a correlated random
force [23].
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APPENDIX

In this Appendix, we analyze solutions of the Langevin
equation (15) together with dq/dt = p/M by employing a
one-sided Fourier transform [18]. After performing the Fourier
transform, we obtain

−q0 − iωq(ω) = p(ω)

M

and

−p0 − iωp(ω) ± M�2q(ω) = −βp(ω) + ξ (ω), (A1)

where (q0, p0) are the initial conditions and q(ω) =∫ ∞
0 dt exp(iωt)q(t) is the one-sided Fourier transform of

the coordinate. The transforms p(ω) and ξ (ω) are similarly
defined. Combining the two equations in (A1) gives the Fourier
transforms of the collective variables:

q(ω) = iq0
ω + iβ

ω2 ∓ �2 + iωβ
− 1

M

p0 + ξ (ω)

ω2 ∓ �2 + iωβ
, (A2)

p(ω) = ±M�2q0

ω2 ∓ �2 + iωβ
+ iω

p0 + ξ (ω)

ω2 ∓ �2 + iωβ
. (A3)

The time dependence of the collective variables are found from
the inverse Fourier transformation,

q(t) =
∫ +∞

−∞

dω

2π
exp(−iωt)q(ω)

and

p(t) =
∫ +∞

−∞

dω

2π
exp(−iωt)p(ω). (A4)

Integration over ω in these expressions can be carried out with
the help of the Cauchy theorem. Here, we give the results for
a parabolic potential barrier:

q(t) = q0R(t) + p0S(t) +
∫ t

0
dt ′S(t − t ′)ξ (t ′) (A5)

and

p(t) = q0(M�)2S(t) + p0Q(t) +
∫ t

0
dt ′Q(t − t ′)ξ (t ′),

(A6)
where

Q(t) = exp

(
−β

2
t

)(
cosh �t − β

2�
sinh �t

)
, (A7)

S(t) = 1

M�
exp

(
−β

2
t

)
sinh �t, (A8)

and

R(t) = exp

(
−β

2
t

)(
cosh �t + β

2�
sinh �t

)
(A9)

with � =
√

�2 + (β/2)2. The solutions can be given in a
similar manner for a parabolic potential well. The mean values
of collective variables are obtained by taking the ensemble
average of (A5) and (A6),

q̄(t) = q̄0R(t) + p̄0S(t)

and

p̄(t) = q̄0(M�)2S(t) + p̄0Q(t). (A10)

The variances are given by

σqq(t) = σq0R
2(t) + σp0S

2(t)

+
∫ t

0
ds

∫ t

0
ds ′S(s)S(s ′)2D0χ (s − s ′), (A11)

σqp(t) = σq0(M�)2R(t)S(t) + σp0S(t)Q(t)

+
∫ t

0
ds

∫ t

0
ds ′S(s)Q(s ′)2D0χ (s − s ′), (A12)

and

σpp(t) = σq0(M�)4S2(t) + σp0Q
2(t)

+
∫ t

0
ds

∫ t

0
ds ′Q(s)Q(s ′)2D0χ (s − s ′). (A13)

In these expressions, first two terms describe propagation
of the initial fluctuations of the coordinate and momentum
distributions σq0, σp0 and the last term arises from dynamical
fluctuations generated by the random force.

For calculating the formation probability of a compound
nucleus, we need an explicit expression for the variance σqq(t)
of the collective variable. In the Markovian limit, using the
fact that the correlation function behaves like a delta function,
χ (s − s ′) → δ(s − s ′), we obtain the known analytical result
for the dynamical part of the σqq(t) [5],

σχ
qq(t) =

∫ t

0
ds

∫ t

0
ds ′S(s)S(s ′)2D0χ (s − s ′)

→
∫ t

0
ds

∫ t

0
ds ′S(s)S(s ′)2D0δ(s − s ′)

= T

M�2
e−βt

[
β2

2�
2 (sinh �t)2

+ β

2�
(sinh 2�t) − e+βt + 1

]
. (A14)
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In the classical limit, the dynamical part of the σqp(t) and
σpp(t) are similarly given by

σχ
qp(t) =

∫ t

0
ds

∫ t

0
ds ′S(s)Q(s ′)2D0χ (s − s ′)

→
∫ t

0
ds

∫ t

0
ds ′S(s)Q(s ′)2D0δ(s − s ′)

= βT

�
2 e−βt (sinh �t)2 (A15)

and

σχ
pp(t) =

∫ t

0
ds

∫ t

0
ds ′Q(s)Q(s ′)2D0χ (s − s ′)

→
∫ t

0
ds

∫ t

0
ds ′Q(s)Q(s ′)2D0δ(s − s ′)

= MT
β

�
e−βt sinh �t

[
cosh �t − β

2�
sinh �t

]

+ MT (1 − e−βt ). (A16)

For quantal calculations, introducing the Fourier transform of
the correlation function,

χ (s − s ′) =
∫ +∞

−∞

dω

2π
e−iω(s−s ′)χ̃(ω), (A17)

we can express the dynamical part of the variance in terms of
a one-dimensional numerical integration over the frequency ω

as

σχ
qq(t) =

∫ +∞

−∞

dω

2π
|S̃t (ω)|2χ̃ (ω)2D0, (A18)

where S̃t (ω) = ∫ t

0 dsS(s)e−iωs . The dynamical parts of vari-
ances σqp(t) and σpp(t) can be evaluated in a similar manner
to give

σχ
qp(t) =

∫ +∞

−∞

dω

2π
S̃t (ω)Q̃∗

t (ω)χ̃(ω)2D0

and

σχ
pp(t) =

∫ +∞

−∞

dω

2π
|Q̃t (ω)|2χ̃(ω)2D0, (A19)

where Q̃t (ω) = ∫ t

0 dsQ(s)e−iωs .
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