Crystal Structure of 2,6-Dioxa-14,18-diazatricyclo[18,4,0,0,12]-tetracosa-7,9,11,20,22,24(1)-hexaene

Tuncer Höкelek,*† Nurcan Akduran,* Elif Ece Kaya,** and Zeynel Kiliçc**
*Department of Physics, Hacettepe University, 06532 Beytepe-Ankara, Turkey
**Department of Chemistry, Ankara University, 06100 Tandoğan-Ankara, Turkey

(Received December 2, 1999; Accepted April 28, 2000)

Macrocyclic multidentate $\mathrm{N}_{2} \mathrm{O}_{2}$ donor-type ligands have been investigated previously as potential metal-ion-selective reagents. ${ }^{1,2}$ A series of these investigations have involved the synthetic, thermodynamic and structural properties of selective complex formation of a number of transition metal ions. ${ }^{3}$ There are only a few reports about the structures of the free macrocyclic multidentate $\mathrm{N}_{2} \mathrm{O}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$ donor-type ligands. ${ }^{4-6}$
The title compound was prepared from the reduction of the reaction product of 1,5 -bis(2-formylphenyl)-1,5-dioxapentane $(2.84 \mathrm{~g}, 0.01 \mathrm{~mol})$ and 1,3-diaminopropane $(0.74 \mathrm{~g}, 0.01 \mathrm{~mol})$ by $\mathrm{NaBH}_{4}(2.00 \mathrm{~g}, 0.05 \mathrm{~mol})$ in THF-MeOH mixture (1:1). The residue was dissolved in CHCl_{3}-light petroleum (1:1) and set

Table 1 Crystal and experimental data

[^0]aside for crystallization at ambient temperature [m.p. $91^{\circ} \mathrm{C}$ and yield $1.4 \mathrm{~g}(49 \%)]$.
The structure determination was carried out in order to estimate the relative macrocyclic ring hole size of the molecule. The intramolecular distances $\mathrm{N} 1 \cdots \mathrm{O} 14.057(3)$ and $\mathrm{N} 2 \cdots \mathrm{O} 2$ $5.058(3) \AA$ may reflect the size of the hole of the macrocyclic ring. When only the N and O atoms are taken into account, the mean $\mathrm{N} \cdots \mathrm{O}$ distance is $4.558(3) \AA$. A least-squares plane defined by $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1$ and N 2 has maximum deviations to either side of the plane of $0.338(2)(\mathrm{O} 1),-0.310(2)(\mathrm{O} 2)$, $0.383(2)$ (N 1) and $-0.412(2)(\mathrm{N} 2)$. The relative macrocyclic inner-hole size, estimated as twice the mean distance of the donor atoms from their centroid, is approximately $1.57 \AA$, using the 'modified covalent radii' of the $\mathrm{N} \mathrm{sp}{ }^{2}(0.66 \AA)$ and $\mathrm{O} \mathrm{sp}^{3}$ $(0.76 \AA)$ atoms as in the literature method. ${ }^{2}$ There is an intramolecular hydrogen bond between N 1 and N 2 atoms [$\mathrm{N} \cdots \mathrm{N}$

Fig. 1 Chemical structure.

Fig. 2 Molecular structure of the title compound with atom-numbering scheme. The thermal ellipsoids are drawn at the 20% probability level.

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

Atom	x	y	z	$B_{\mathrm{eq}} / \AA^{2}$
C1	$0.6585(2)$	$0.1741(1)$	$0.6298(2)$	$5.20(5)$
C2	$0.7842(2)$	$0.1376(1)$	$0.6978(2)$	$4.48(4)$
C3	$0.7791(3)$	$0.1122(1)$	$0.8204(2)$	$5.45(5)$
C4	$0.8899(3)$	$0.0765(2)$	$0.8852(2)$	$6.42(6)$
C5	$1.0103(3)$	$0.0662(2)$	$0.8287(3)$	$6.88(7)$
C6	$1.0200(3)$	$0.0912(2)$	$0.7065(3)$	$6.29(6)$
C7	$0.9075(2)$	$0.1264(1)$	$0.6417(2)$	$4.86(5)$
C8	$0.9199(2)$	$0.0999(1)$	$0.4240(2)$	$5.17(5)$
C9	$0.9478(2)$	$0.1381(2)$	$0.3031(2)$	$5.89(6)$
C10	$0.8289(2)$	$0.1836(1)$	$0.2439(2)$	$5.51(5)$
C11	$0.6092(2)$	$0.1556(1)$	$0.1240(2)$	$4.39(4)$
C12	$0.6053(1)$	$0.2213(1)$	$0.0569(2)$	$5.47(5)$
C13	$0.4984(3)$	$0.2335(2)$	$-0.0373(2)$	$6.58(6)$
C14	$0.3942(3)$	$0.1832(2)$	$-0.0625(2)$	$7.10(7)$
C15	$0.3964(3)$	$0.1194(2)$	$0.0077(2)$	$6.08(6)$
C16	$0.5025(2)$	$0.1034(1)$	$0.1018(2)$	$4.58(4)$
C17	$0.5031(2)$	$0.0341(1)$	$0.1791(2)$	$5.22(5)$
C18	$0.3430(2)$	$0.0793(1)$	$0.3284(2)$	$5.02(5)$
C19	$0.3264(2)$	$0.0945(1)$	$0.4667(2)$	$5.19(5)$
C20	$0.4266(2)$	$0.1502(1)$	$0.5299(2)$	$5.45(5)$
N1	$0.5675(2)$	$0.12089(9)$	$0.5591(2)$	$4.30(4)$
N2	$0.4745(2)$	$0.0422(1)$	$0.3119(2)$	$4.55(4)$
O1	$0.7148(2)$	$0.13482(9)$	$0.2125(1)$	$5.45(3)$
O2	$0.9200(2)$	$0.15411(9)$	$0.5215(2)$	$5.92(4)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
$3.041(3)$ and $\mathrm{H} 2 \cdots \mathrm{~N} 12.40(2) \AA]$. The configuration of the macrocyclic ring is given by the torsion angles (Table 4)
The positions of H51, H61, H121, H141 and H151 atoms were calculated geometrically $0.95 \AA$ from the corresponding atoms, and a riding model was used in the refinement process. The remaining ones were obtained from the difference map and refined isotropically.

References

1. L. F. Lindoy, in "Process in Macrocyclic Chemistry", 1987, Vol. 3, Wiley, New York, 53.

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

C1-C2	$1.500(3)$	C11-C16	$1.398(3)$
C7-C2	$1.387(3)$	C16-C17	$1.500(3)$
C7-O2	$1.383(3)$	C17-N2	$1.464(3)$
O2-C8	$1.425(3)$	N2-C18	$1.453(3)$
C8-C9	$1.501(4)$	C18-C19	$1.512(3)$
C9-C10	$1.498(3)$	C19-C20	$1.509(3)$
C10-O1	$1.424(3)$	C20-N1	$1.459(3)$
O1-C11	$1.386(2)$	N1-C1	$1.460(3)$
C9-C10-O1	$107.1(2)$	C1-N1-C20	$111.5(2)$
C16-C11-O1	$114.4(2)$	C12-C11-O1	$124.9(2)$
C11-O1-C10	$119.6(2)$	C19-C20-N1	$112.9(2)$
O2-C8-C9	$108.1(2)$	C7-C2-C1	$122.7(2)$
C18-C19-C20	$115.6(2)$	C2-C1-N1	$111.8(2)$
C17-C16-C11	$120.6(2)$	O2-C7-C2	$119.3(2)$
C6-C7-O2	$119.7(2)$	C18-N2-C17	$113.8(2)$
N2-C17-C16	$116.6(2)$	C8-C9-C10	$115.0(2)$
C7-O2-C8	$114.8(2)$	N2-C18-C19	$111.7(2)$

Table 4 Torsion angles (${ }^{\circ}$)

C11-O1-C10-C9	$-159.9(2)$	C1-N1-C20-C19	$-175.2(2)$
O1-C10-C9-C8	$-62.0(3)$	N1-C20-C19-C18	$-75.5(3)$
C10-C9-C8-O2	$-72.5(3)$	C20-C19-C18-N2	$67.5(3)$
C9-C8-O2-C7	$-174.7(2)$	C19-C18-N2-C17	$-173.1(2)$
C2-C1-N1-C20	$160.6(2)$	C18-N2-C17-C16	$55.5(3)$

2. K. R. Adam, A. J. Leong, L. F. Lindoy, H. C. Lip, B. W. Skelton, and A. H. White, J. Am. Chem. Soc., 1983, 105, 4645.
3. K. Henrick, L. F. Lindoy, M. McPartlin, P. A. Tasker, and M. P. Wood, J. Am. Chem. Soc., 1984, 106, 1641.
4. P. S. K. Chia, A. Ekstrom, I. Liepa, L. F. Lindoy, M. McPartlin, S. V. Smith, and P. A. Tasker, Aust. J. Chem., 1991, 44, 737.
5. T. Hökelek, Z. Kılıç, and S. Bilge, Acta Crystallogr., 1999, C55, 248.
6. T. Hökelek, Z. Kılıç, and S. Bilge, Acta Crystallogr., 1999, C55, 381.

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

