Crystal Structure of a Symmetrical Heterotrinuclear $\mathrm{Ni}^{\mathrm{II}}-\mathrm{Mn}^{\mathrm{II}}$ - $\mathrm{Ni}^{\mathrm{II}}$ Complex: $\operatorname{Bis}\left\{\left(N, N^{\prime}\right.\right.$-dimethylformamide) (μ-acetato) $\left[\mu\right.$ - N, N^{\prime}-bis(salicylidene)-2-hydroxy-1,3-propanediamine]nickel(II)\}manganese(II)

Orhan Atakol,** Hasan Nazir,* Zehra Durmus,* Ingrid Svoboda,** and Hartmut Fuess**
*Department of Chemistry, Faculty of Science, Ankara University, Tandogan 06100 Ankara, Turkey
**Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt Petersenstrasse 23, D-64287 Darmstadt, Germany

(Received February 26, 2001; Accepted October 1, 2001)
N, N^{\prime}-Bis(salicylidene)-1,3-propanediamine ${ }^{1,2}$ and its 2-hydroxy derivative ${ }^{3-6}$ (1) have been reported to have a greater tendency to yield polynuclear complexes. This communication presents the X-ray structure of the Ni-Mn-Ni complex (2) prepared using ligand 1 (Fig. 1). The title complex was prepared in two steps. Step 1: After the ligand $(0.01 \mathrm{~mol}, 2.98 \mathrm{~g})$ was dissolved in hot $\mathrm{EtOH}(50 \mathrm{~mL})$, a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{~mol}, 2.37 \mathrm{~g})$ in hot water $(30 \mathrm{~mL})$ and ammonia (10 mL) was then added. The resulting solution was thoroughly mixed and set aside for 2 h . The precipitated crystals were filtered and dried at 363 K . Step 2: Filtered crystals were dissolved in hot DMF and mixed with a hot $\mathrm{MeOH}(20 \mathrm{~mL})$ solution of $\mathrm{Mn}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.0005 \mathrm{~mol}$, $0.123 \mathrm{~g})$. The resulting solution was set aside for 24 h . The precipitated crystals were filtered, dried in air and used for Xray data collection with graphite-monochromatized $\operatorname{Mo} \mathrm{K}_{\alpha}(\lambda=$
$0.71093 \AA$) radiation. The crystal and experimental data are presented in Table 1 and an ORTEP ${ }^{7}$ plot of the titled complex is shown in Fig. 2. Table 2 gives the final atomic coordinates, while the bond distances and angles are given in Table 3.
Each Ni atom is coordinated by 4 oxygen and 2 nitrogen atoms. The Mn atom is located on a center of inversion, and is coordinated by 6 oxygen atoms. The distance $\mathrm{Ni}-\mathrm{Mn}$ is $3.1299(6) \AA$ and the $\mathrm{Ni}-\mathrm{Mn}-\mathrm{Ni}$ bond angle is 180°. The methylene-bonded OH group was expected to form intermolecular interactions, but instead formed intramolecular H-bonding to the $\mathrm{O}(1)$ atom of the coordinated dimethylformamide group, such that the O6-H6‥O1: O6-H6 distance is $1.11(4) \AA$; the H6 $\cdots \mathrm{O} 1$ distance is $1.87(4) \AA$ and the O6-H6 $\cdots \mathrm{O} 1$ angle is $175(4)^{\circ}$.

Table 1 Crystal and experimental data

```
    Formula: \(\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{MnN}_{6} \mathrm{Ni}_{2} \mathrm{O}_{12}\)
    Formula weight \(=1029.38\)
    Crystal system: triclinic
    Space group: \(P \overline{1} \quad Z=1\)
    \(a=9.466(1) \AA \quad \alpha=67.167(8)^{\circ}\)
    \(b=10.652(1) \AA \quad \beta=80.169(9)^{\circ}\)
    \(c=12.605(1) \AA \quad \gamma=89.610(10)^{\circ}\)
    \(V=1151.7(2) \AA^{3}\)
    \(D_{\mathrm{x}}=1.484 \mathrm{~g} / \mathrm{cm}^{3}\)
    \(\mu=1.08 \mathrm{~mm}^{-1}\)
    \(\theta_{\text {max }}=25.98^{\circ}\)
    \(K=295\)
    Trans. factors \(\left(T_{\min }, T_{\max }\right)=0.750,0.827\)
    \(F(000)=535\)
    Reflns. meas. \(=5235\)
    Reflns with \(I \geq 2 \sigma(I)=2868\)
    Reflns unique, \(R_{\text {int }}=4518,0.023\)
    \(R=0.037 \quad R w=0.086\)
    \(S=1.01\)
    Crystal size \(=0.10 \times 0.20 \times 0.20 \mathrm{~mm}\)
    Diffractometer: Enraf-Nonius CAD-4
    Weighting scheme: \(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0469 P)^{2}+0.2935 P\right.\)
                                    where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
    \((\Delta \rho)_{\max }=0.38 \mathrm{e}^{\AA^{-3}}\)
    \((\Delta \rho)_{\text {min }}=-0.31 \mathrm{e}^{-3}\)
    Program used: WinGX \({ }^{8}\), SHELXS-97 \({ }^{9}\), SHELXL-97 \({ }^{10}\), Platon \(^{7}\)
```

[^0]

Fig. 2 ORTEP 7 plot of the title complex. The displacement ellipsoids are drawn at the 50% probability level and the H atoms are shown as small circles of arbitrary radii.

Acknowledgements

Orhan Atakol is very grateful for the scholarship provided by the Deutscher Akademischer Austauschdienst.

References

1. C. Fukuhara, K. Tsuneyoshi, N. Matsumoto, S. Kida, M. Mikuriya, and M. Mori, J. Chem. Soc. Dalton Trans., 1990, 3473.
2. A. Gerli, K. S. Hagen, and L. G. Marzilli, Inorg. Chem., 1991, 30, 4673.
3. S. Uhlenbrock, R. Wegner, and B. Krebs, J. Chem. Soc. Dalton Trans., 1996, 3731.
4. H. Aneetha, K. Panneerselvam, T. F. Liao, T. H. Lu, and C. S. Chung, J. Chem. Soc. Dalton Trans., 1999, 2689.
5. M. Mikuriya, N. Tsuru, S. Ikemi, and S. Ikenove, Chem. Lett., 1998, 879.
6. M. Mikuriya, K. Nakadera, and T. Kotera, Chem. Lett., 1993, 637.
7. L. Spek, PLATON, A Multipurpose Crystallographic Tool, 2000, Utrecht University, Utrecht, The Netherlands.
8. L. J. Farrugia, J. Appl. Cryst., 1999, 32, 837.
9. G. M. Sheldrick, SHELXS97, Program for the Solution of Crystal Structures, University of Göttingen, Germany,

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

Atom	x	y	z	$B_{\text {eq }}$
C1	$-0.0813(4)$	$0.2527(3)$	$-0.0729(3)$	$0.0319(8)$
C2	$-0.2287(4)$	$0.2583(4)$	$-0.0367(3)$	$0.0412(9)$
C3	$-0.3275(5)$	$0.1697(4)$	$-0.0430(4)$	$0.0513(11)$
C4	$-0.2859(5)$	$0.0703(4)$	$-0.0858(4)$	$0.0524(11)$
C5	$-0.1418(5)$	$0.0621(4)$	$-0.1196(4)$	$0.0476(10)$
C6	$-0.0377(4)$	$0.1513(3)$	$-0.1159(3)$	$0.0350(8)$
C7	$0.1108(4)$	$0.1300(4)$	$-0.1523(3)$	$0.0400(9)$
C8	$0.3609(4)$	$0.1654(4)$	$-0.2090(4)$	$0.0480(10)$
C9	$0.4444(5)$	$0.2742(4)$	$-0.3180(4)$	$0.0484(10)$
C10	$0.5075(4)$	$0.3924(5)$	$-0.2984(4)$	$0.0507(11)$
C11	$0.4181(4)$	$0.6086(4)$	$-0.3365(3)$	$0.0410(9)$
C12	$0.3262(4)$	$0.7153(3)$	$-0.3307(3)$	$0.0360(8)$
C13	$0.3596(5)$	$0.8441(4)$	$-0.4202(4)$	$0.0569(12)$
C14	$0.2777(6)$	$0.9523(4)$	$-0.4255(4)$	$0.0638(13)$
C15	$0.1610(6)$	$0.9333(4)$	$-0.3384(4)$	$0.0603(13)$
C16	$0.1258(5)$	$0.8088(4)$	$-0.2476(3)$	$0.0465(10)$
C17	$0.2055(4)$	$0.6955(3)$	$-0.2408(3)$	$0.0343(8)$
C18	$0.0227(5)$	$0.5394(4)$	$-0.3347(4)$	$0.0499(10)$
C19	$-0.1082(7)$	$0.7316(6)$	$-0.4333(5)$	$0.099(2)$
C20	$0.1079(6)$	$0.6740(6)$	$-0.5394(4)$	$0.0839(16)$
C21	$0.2820(4)$	$0.3551(4)$	$0.0665(3)$	$0.0453(9)$
C22	$0.3888(6)$	$0.3183(8)$	$0.1475(5)$	$0.110(2)$
N1	$0.3969(3)$	$0.4805(3)$	$-0.2758(2)$	$0.0376(7)$
N2	$0.2213(3)$	$0.2093(3)$	$-0.1727(2)$	$0.0356(7)$
N3	$0.0049(4)$	$0.6395(3)$	$-0.4327(3)$	$0.0553(9)$
O1	$0.1189(3)$	$0.4600(3)$	$-0.3263(2)$	$0.0480(7)$
O2	$0.1686(3)$	$0.5771(2)$	$-0.15356(19)$	$0.0365(6)$
O3	$0.0115(2)$	$0.3384(2)$	$-0.0647(2)$	$0.0338(6)$
O4	$0.1697(3)$	$0.4054(3)$	$0.0960(2)$	$0.0428(6)$
O5	$0.3161(3)$	$0.3327(3)$	$-0.0247(2)$	$0.0428(6)$
O6	$0.3606(4)$	$0.3211(4)$	$-0.4088(3)$	$0.0751(10)$
Ni1	$0.21077(5)$	$0.39383(5)$	$-0.16194(4)$	$0.03113(14)$
Mn1	0.0000	0.5000	0.0000	$0.03038(19)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i} * a_{j} *\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.

Table 3 Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

Ni1-N1	$2.036(3)$	Nil-O3	$2.018(2)$	
Ni1-N2	$2.023(3)$	Ni1-O5	$2.029(3)$	
Ni1-O2	$2.029(2)$			
O3 Nil N2	$90.12(10)$	O5 Ni1 O2	$94.00(10)$	
O3 Ni1 O5	$95.98(10)$	O3 Nil N1	$170.02(11)$	
N2 Nil O5	$92.05(11)$	N2 Ni1 N1	$96.80(12)$	
O3 Nil O2	$83.08(9)$	O5 Ni1 N1	$90.97(11)$	
N2 Ni1 O2	$171.33(11)$	O2 Nil N1	$89.31(11)$	

1997a.
10. G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997b.

[^0]: ${ }^{\dagger}$ To whom correspondence should be adressed.

