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ABSTRACT
This paper aims to estimate mortality rate, morbidity-mortality rates of a chronic
disease utilizing phase type law in the frame of two and three state Markov pro-
cesses. The application on commonly used mortality tables in Turkey are adopted to
Markov process to estimate the future mortalities with respect to phase type distri-
bution for the purpose of justifying. Using one absorbing state, two and three state
Markov Models calculate the time until absorbing of the death and death by phase
type distribution for each gender. Consequently, the 3-state probabilities in estimat-
ing the mortality-morbidity rates of IHD for Turkish population yield a significant
information on the health management and pricing health insurance products.
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Phase type distributions; mortality; morbidity; two state markov process; three
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1. Introduction

Improvement of life standards and health conditions have caused a change in life
expectancy. Mortality measures do not always provide sufficient information about the
population, as the collection of the complete data may take over 100 years. Because of
these reasons, mortality and morbidity estimations, especially that of chronic diseases
and disabilities has become more important [13]. Addition to this, morbidity and
mortality rates have important effect on actuarial valuations. Its estimation and its
efficiency are significant in financial decisions. Precise knowledge in morbidity and
mortality rates are also important for Social Security Institutions (SSI) and insurance
companies. The estimation of morbidity and mortality supply guiding principle to
decision makers for the calculation of premiums and the estimation of reserves [18].
As the estimation of the mortality and morbidity rates require mostly a long term
collection of data, many tables in the literature are the results of estimation techniques.
The well-known models in estimating the mortality rates are DeMoivre, Gompertz,
Makeham and Weibull, which depends on historical realizations of populations [6].
Additionally, recent developments, such as Lee-Carter, the mortality rate using a self-
generating set of iterations, can be used when the past information related a population
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does not fit to the models above.
In the morbidity aspect, incidence and the prevalence are the important indicators

where both require individual base observations over long terms. Incidence is a measure
of the probability of the occurrence of a given medical condition in a population
within a specified period of time. Whereas, prevalence represents the proportion of
a population found to have a condition of a specific disease in morbidity studies.
Kaplan-Meier is one of the well-known methods in the literature in the estimation
of the morbidity rates [13]. A novel approach to estimate mortality and morbidity
rates proposed by Lin et al. (2007) and Kay (1986) is Markov model and phase type
distribution. This method implements the stochastic structure into the estimation of
the rates, as well as, to calculate the adopted probabilities which refer to adaptation of
mortality rates to markov process. Additionally it allows introducing new states,such
as, causes of the death or illnesses.

As it is well known, as a critical illness, IHD is accounted as the most commonly
observed, deathly illness compared to other diseases. Contrary to the mortality, mor-
bidity of a certain disease, such as Ischemic heart disease (IHD) allows more states,
such as Healthy-Disease, Disease-Disease, Disease-Death. Therefore, the likelihood of
these states are important indicators on the impact of the disease. IHD is selected as
the case study due to its remarkable fatality rate, especially, in the western countries
[2]. The statistics indicate that 20% of the causes of the total death come from IHD
[8].

There exists many studies in literature on morbidity estimation ( [22] [11]). Helig-
man and Pollard propose a mathematical expression for the age pattern of mortality
tables by applying to Australian National Mortality data. This model allows mortality
comparisons regarding age and sex both among countries and within the same country
over time [11]. These studies are also used in this study to develop the methodology on
estimation of adopted mortality and morbidity rates. However, to our best knowledge
in the recent literature, markov process considering mortality and morbidity of IHD
using phase type distribution has not been studied.

Phase type distributions which take into account the duration between states as
markov jump process is commonly used in health sciences to embed the influence of
the absorbing state of the disease. The advantage in phrasing the transition from one
state to another with random duration gains importance especially in observations
which do not have long history. The implementation of the phase type distribution to
mortality from a certain chronic disease or natural causes is the main motivation in
this paper.

Phase type distribution is introduced as the distribution of absorbing times of the
Markov process in the earlier studies [4]. Ellis (1978) gives some definitions and proper-
ties of two states of Markov process [9]. Wand and Pham (2011) define neutral ageing
with degeneration of normal ageing [26]. Winkler introduces a theory of continuous
Markov process [27]. Collins and Huzurbazar [7] review multi-state models, focusing
on time-homogeneous semi-Markov processes. Hubbard et al. [14] propose models
in which the time scale of a non-homogeneous Markov process is transformed to an
operational time scale on which the process is homogeneous. Phase type distribution
is used in the risk theory by Blandt at which basic definition of the distribution is
given and phase type renewal theory is introduced [4]. Faddy uses this distribution
to apply to some industrial data for the purpose of determining the failure times [10].
McClean and Millard use this model to determine the relationship between hospital
and community cares for the older patients [21]. Xie et al. use continuous time Markov
model to analyse transition within and between residential and nursing home cares.
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A procedure is introduced to determine the structure of the model and estimating
parameters by maximum likelihood [28]. Steinsaltz et al. (2004) illustrate the the-
ory and application of Markov models of aging [23]. Keyfitz and Rogers (1982) show
the standard life contingency formulas with matrix analogues [ [19]]. Jackson et al.
(2003) use multistate Markov model for disease progression with classification error
[16]. Hoogenveen et al. (2010) introduce Markov-type multi-state model for deal with
effects of changes in risk factors for chronic diseases on morbidity and mortality [12].
Lin and Liu (2007) use Markov process and phase type distribution in the mortality
analyses which aims to derive the estimates of model parameters does not account any
disease related death [20].

The aim of this study is to implement phase type distribution to estimate adopted
mortality rates for existing and currently used mortality tables and three-state mor-
bidity rates for a selected disease. To achieve this aim, an application is performed on
Turkish mortality tables, and IHD recordings based on Turkish SSI data base.

This paper illustrates the impact of implementing the methodology proposed in the
improvement of mortality and morbidity rates [1]. Phase type distribution which is
mostly applied to disease rates, is applied to Turkish population data first time in the
literature.

The remainder of the paper is organized as follows: Section 2 introduces the method-
ology of Markov process and phase type distribution. In Section 3, estimation of mor-
tality rates using two-state markov process is introduced on Turkish Mortality tables.
In Section 4, morbidity and mortality estimation of Ischemic heart disease (IHD) are
analysed by three-states Markov process, time until exposure to the disease and time
until death, that are given with phase type distribution. Finally, the discussion and
conclusion are provided in the last section.

2. Preliminaries: Markov Process and Phase Type Distribution

Markov process is a stochastic process that satisfies the Markov property, which is
used in many fields for different purposes, such as finance, demography, insurance,
industrial sectors and etc. [10, 17, 19]. In literature, there are continuous and discrete,
time-homogeneous and non-homogenous, finite state and infinite state versions and
combinations of Markov process [13, 24, 27].

Definition 2.1. Given {Xn : n ≥ 0} with a state space S ∈ {0, 1, 2, .., k} is called a
discrete-time Markov chain if and only if it has the Markov property as

pij = P{Xs+t = j|Xs = i,Xu = xu, 0 ≤ u < s} = P{Xs+t = j|Xs = i} (2.1)

The Markov property given above describes the past and future states which are
conditionally independent and the time of staying at state i before moving to state j
follows an exponential distribution with parameter λij , which is denoted as transition
rate.

Each transition probability, pij , represented in matrix form P (t) can be expressed
in the form of its transition (hazard) rate, λij , matrix Q(t) (t = 0, 1, 2, ...) using
Kolmogorov differential equations [17, 20] as follows:

P (t) = exp(Q(t)), t = 0, 1, 2, ... (2.2)
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Definition 2.2. Phase Type Distribution
Let {X(t)}t=0,1,2,... be a Markov jump process on the finite state space E = {1, 2, .., k}
where the states 1, 2, .., k−1 are the transient states and state k is the absorbing state.
Then {X(t)}t=0,1,2,... has an intensity matrix of the form

Q =

(
T t
0 0

)
(2.3)

T is (k − 1) × (k − 1) dimensional matrix, t = −Te where e′ = (1 1 . . . 1), and
0 is k − 1 dimensional row vector of zeros. Let α = (α1 α2 . . . αk) denote the initial
distribution of (X(t))t≥0 over the transient states only where αi = P(X0 = i), P(X0 =
k) = 0 [4, 5, 10].

Definition 2.3. The time until death, τ , defined as

τ = inf{t ≥ 0|Xt = k} (2.4)

is said to have phase type distribution and denoted as

τ ∼ PH(α,T) (2.5)

The set of parameters (α,T) is said to be a representation of the phase type distri-
bution [20]. The (α, k − 1) are the dimension of the phase type distribution. Initial
distribution, α, determines the probability mass function on the states [23].

Some special case, such as consideration of mortality require implementing the ran-
dom factor, ε, having impact on the state probability. To cope with this random effect,
we modify the phase type distribution with respect to ε.

Theorem 2.1. Let f(.) be the density function, s be the age, α be the initial distri-
bution. If T and t come from the intensity matrix then,

f(s) = α exp(Ts)t (2.6)

Theorem 2.2. Let S(s) be the survival function, then

S(s) = 1− F (s)
= α exp(Ts)ije (2.7)

and

λ(s) =
α exp(Ts)t

α exp(Ts)e
(2.8)

As markov models has the assumption on constant transition rates with respect to
time, the age specific transition intensities related to mortality rates are depicted by
including random component (ε) to the transition rates.
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2.1. Two State Markov Process

Two state Markov process has one transition with two states of which the last one
represents absorbing state. P (t) can be written as [17]

P (t) =

(
1 1
0 1

)(
exp(−λt) 0

0 1

)(
1 −1
0 1

)
Thus,

P (t) =

(
exp(−λt) 1− exp(−λt)

0 1

)
Rewriting the transition matrix and the transition rate matrix with phase type for-
mulation given in Equation (2.2), matrix turns out to be

P (s) = exp(Qs) =

(
exp(−Ts) e− exp(−Ts)e

0 1

)
The probability of being state 1 at time t is pt = exp(−λt) which is equivalent to the
exponential survival function S(t) = exp(−λt).

2.2. Three-State Markov Process

In the three-state Markov process the transition is only in one direction and the last
state represents the absorbing state.

By the spectral decomposition, similar to the two-state case, the three state P (t)
matrix is expressed as follows:

P (t) =

 exp(−(λ12 + λ13)t) exp(−λ12t) 1− (1 + exp(−λ13t)) exp(−λ12t)
0 exp(−λ23t) 1− exp(−λ23t)
0 0 1


(2.9)

Rewriting the transition matrix and the transition rate matrix with phase type nota-
tion, P (t) = exp(Q(t)), t = 0, 1, 2, ... yields

Q =

(
T t
0 0

)
(2.10)

T =

(
−(λ12 + λ13) λ12

0 −(λ23)

)
(2.11)

t =

(
λ13
λ23

)
. (2.12)

Here, the probability of being state 1 and 2 at time t can be found as pt = exp(−λt).
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3. Mortality Estimation: Turkish case

The improvement of medical technology and life standards cause higher expected life
time and lower mortality rates leading to increase in population at older ages. Turkey,
like other countries, is also exposed to low fertility and longer life time, even though its
high rate in younger ages. Mortality rates are the key components to make inferences
and predictions on future estimates of some demographic indicators such as population.

The population census official results, which was started in 1927 and then switched
to Address Based Population Registration System (ABPRS) in 2008, are summarized
in Table 1. The refractions in 1938 and 2007 are significant as the first date refers to the
inclusion of Hatay city in the borders of Turkish Republic and the latter corresponds
to changed to ABPRS.

Table 1. Turkish Population Data Between 1927 to 2013 [2]

Year Population Male Female
Census 1927 13,648,270 6,563,879 7,084,391

1935 16,158,018 7,936,770 8,221,248
1940 17,820,950 8,898,912 8,922,038
1945 18,790,174 9,446,580 9,343,594
1950 20,947,188 10,527,085 10,420,103
1955 24,064,763 12,233,421 11,831,342
1960 27,754,820 14,163,888 13,590,932
1965 31,391,421 15,996,964 15,394,457
1970 35,605,176 18,006,986 17,598,190
1975 40,347,719 20,744,730 19,602,989
1980 44,736,957 22,695,362 22,041,595
1985 50,664,458 25,671,975 24,992,483
1990 56,473,035 28,607,047 27,865,988
2000 67,803,927 34,346,735 33,457,192

ABPRS 2007 70,586,256 35,376,533 35,209,723
2008 71,517,100 35,901,154 35,615,946
2009 72,561,312 36,462,470 36,098,842
2010 73,722,988 37,043,182 36,679,806
2011 74,724,269 37,532,954 37,191,315
2012 75,627,384 37,956,168 37,671,216
2013 76,667,864 38,473,360 38,194,504

CSO 1980 Mortality Table was the most commonly used table till 2010 in insurance
sector and social security institutions. Due to regulatory requirements, sector started
using custom tailored Turkish Mortality Tables, TRSH2010, TRH2010 and SGK2008.
These tables represent insured mortality rates, total population rates and social secu-
rity beneficiary mortality rates. The tabulation of these tables is out of scope of this
paper as it requires dealing with different type of data set and methodology to evaluate
these rates [25]. Although the completion of these tables are important progress the
effective use of these tables is still an issue in pension and life insurance valuations.
The contradicting points are discrepancy in the age range (Table 2). We find it is vital
to illustrate the influence of different mortality rates on the framework proposed in
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this paper.

Table 2. The Age Range in Turkish Mortality Tables

CSO 1980 TRSH 2010 TRH 2010 SGK 2008
Age Range 0-99 0-110 0-99 14-110

For these reasons we purpose employing phase type distribution for the mortal-
ity estimation from natural and IHD caused death. This approach is regarded as an
alternative valuation of Turkish mortality rates.

3.1. Mortality Estimation with two-state Markov Process

We estimate the duration time until death and mortality rates using the existing
mortality tables (CSO 1980, TRSH 2010, TRH 2010 and SGK 2008) by using phase
type distribution. To achieve this, primarily, Turkish population data and selected
tables are re-arranged in two states: alive and death where the state ’dead’ is taken as
the absorbing state. Taking px, probability of survival, as reference points, P (t) and
Q(t) matrices are built to calculate the survival distribution, S(x), and the λx for each
age, x.

For any specific age, x, the transition probabilities, p12, indicate the probability of
moving from alive to dead state, whereas, the transition rates, λ12, representing the
hazard rate of changing the states. As here P matrix is stochastic, p12 = 1 − p11,
and the absorbing state gets p21 = 0 and p22 = 1. Because of the Markov property,
transition rates become λ11 = −λ12 and yielding an absorbing state, λ21 = λ22 = 0.

Table 3. Mortality and hazard rates with phase type distribution

Probability of Death, p12
Gender Age CSO 1980 TRSH 2010 TRH 2010 SGK 2008
Male 0 0.00370 0.01953 0.01953 -

25 0.00108 0.00075 0.00092 0.00066
45 0.00319 0.00278 0.00302 0.00268
58 0.01102 0.01015 0.01205 0.01077
65 0.02152 0.01929 0.02407 0.02146

Female 0 0.00245 0.00816 0.00816 -
25 0.00053 0.00021 0.00028 0.00020
45 0.00237 0.00080 0.00157 0.00119
58 0.00635 0.00382 0.00588 0.00421
65 0.01145 0.00868 0.013220 0.00868

Transition rates, λ12
Male 0 0.00371 0.01992 0.01992 -

25 0.00108 0.00075 0.00092 0.00066
45 0.00320 0.00279 0.00303 0.00268
58 0.01114 0.01025 0.01220 0.01088
65 0.02199 0.01967 0.02466 0.02193

Female 0 0.00246 0.00823 0.00823 -
25 0.00053 0.00021 0.00028 0.00011
45 0.00238 0.00080 0.00158 0.00119
58 0.00639 0.00384 0.00591 0.00423
65 0.01158 0.00875 0.01340 0.00875

The estimated mortality values, given in Table 3, based on phase type distribution
are plotted for each table, classified with respect to gender together with the orig-
inal mortality rates for comparison (Figure 1). It is observed firstly that the phase
type distribution agrees with the mortality pattern showing consistency in pattern.
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However, it shows deviations for the geriatric ages which is realistic concerning. To
determine the efficiency of the approach, mean square error deviations (MSE) are cal-
culated (Table 4) for mortality rate, qx, and transition rate, λx which presentslower
variation especially for CSO 1980. TRSH 2010 estimates yield the highest MSE among
the others which agrees with mortality rates which are also higher compared to others.

Table 4. Mean Square Errors (MSE) for the adopted Mortality Tables

qx λx
MSE Male Female Male Female

CSO 1980 0.00066 0.00061 0.00076 0.00061
TRSH 2010 0.00238 0.00238 0.01206 0.01098
TRH 2010 0.00081 0.00090 0.01149 0.01960
SGK2008 0.00082 0.00028 0.01569 0.00215

4. Morbidity and Mortality Estimation of IHD

As a chronic type, ischemic heart disease (IHD) causes more deaths and disabilities
compared to other diseases in the world. In light of the projection of large increases in
IHD throughout the world, IHD is likely to become the most common cause of death
worldwide by 2020 [8]. There is no recovery in this disease, and most of the time
surgery is a necessary implementation. People even need a medical supervision and
treatment annually.

Measuring the individual influence of IHD on state of health and consecutively on
economics is important. In case of incomplete historical occurrences, determination of
prevalence and incidence of the disease is troublesome. We propose to estimate IHD
rates with respect to the states it may require. Two state studies the probabilities
and transition rates to change from IHD state to death state, whereas three state case
analyzes the same indicators for the states of health, IHD and death.

4.1. Data and Markov-State Framework

The proposed study is implemented for two- and three-state Markov processes based on
the data collected from Turkish SSI for the years 2007-2009. The data contains around
25 million entries representing an insured who is registered to visit an health institute
(hospitals, health care centers, clinics) in Turkey. Each entry (insured) contains the
age, gender, the date of registration to health institute, the place of birth, location of
the health institute, code of the diagnose (ICD 10) based on the uniquely encrypted
ID of the insured. It should be noted that, in Turkey, around 90% of the population is
covered under social health insurance, as the coverage for one registered worker covers
also the belongings and the family of the insured. Among those registrations in the
data set around 5 million of them are found to be related to IHD which constitutes the
data set employed in the proposed methodology. The comorbidity to other diseases
are neglected. The data after 2009, can not be reached due to changes on the data
sharing policy of SSI. However, due to the special characteristics of the disease, the
time impact is assumed to insignificant on the change of the state of the disease.
Because, the disease can not be reversible (chronic), has to be regularly monitored,
and disappearance of an IHD patient can either be from leaving the country or death.
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(a) CSO 1980,Male (b) CSO 1980,Female

(c) TRSH 2010,Male (d) TRSH 2010,Female

(e) TRH 2010,Male (f) TRH 2010,Female

(g) SGK 2008,Male (h) SGK 2008,Female

Figure 1. The comparison of Phase Type Mortality rates (Estimated value) based on selected tables

For this reason, the existing collection of the data is re-structured with respect to

(i) the application to the health institute first time in the year considered
(ii) the frequency of the repeated visits in the same year
(iii) the visit incurred in the consecutive years.
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By the help of uniquely encrypted ID numbers, the registration to every health
institute visit in the data set is coded with respect to the appearance of the insured
in three consecutive years between 2007-2009 to construct a Markov state framework.
Among nearly 5 million registrations, of which 25% are female. The age distribution
of the IHD patients for each gender is illustrated in Figure 2 for the year 2008. It is
noticed that the similar pattern is observed for 2007 and 2009. The highest incidence
rate for both genders is between ages 55-65.

Data processing : Each insured is categorized by binary code (1- if IHD diagnosed)
if he/she appeared in the registration list for the specific year concerned. The state
of disease is determined according to the binary codes in three consecutive years. For
instance, 010 code represents that patients appeared at the health institute only in
2008, but not in the years 2007 and 2009. It is known that, a patient suffering from IHD
is required to make regular visits to the hospital due to the nature of chronic disease.
Therefore, the code 111 refers to the patient appeared in the system for each year
taken into account. Additionally, based on the expert opinion received from specialist,
40% of the insured coded as 101 in the data set is assumed either they refuse the
treatment at hospitals in 2008 or they might be treated abroad.

Figure 2. Age distribution of IHD for both Genders in 2008

Then, we count the number of insureds having IHD in 2007 (codes 100, 110, 101
and 111) and in 2008 (codes 010, 110, 011 and 111). Figure 3 shows the number of
code 100 fr both genders in year 2007 for illustration.

(a) Male (b) Female

Figure 3. The distribution of the patients with the Code 100 compared to the overall registrations by age

Disappearance in female patients seems to be much higher than male patients and
the rate of continuing the treatment is higher in middle ages compared to infants and
older ages.

Nevertheless, IHD is known to be in first three lethal diseases (heart diseases, cancer
and accident) [8]. Due to its characteristics, expert’s opinion and the high percent of
population covered by SSI, it is assumed the patients whose registrations disappear in
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2009 are regarded as ’died’ in the coding.
According to this assumption, the total number of death from IHD in 2009 are given

in Figure 4. This figure also illustrates a comparative state of IHD caused-deaths with
respect to the number of deaths in 2009 [3].

(a) Male (b) Female

Figure 4. The number of IHD caused deaths with respect to the total number of deaths in 2009.

With respect to proposed framework, we determine two- and three-state Markov
process and calculate mortality, morbidity and hazard rates based on the phase type
law for each age. For space limitations, the results of proposed framework are presented
for the ages, 0, 25, 45, 58, and 65 to represent infant, young, middle and two alternative
retirement ages for Turkey, respectively.

4.2. Two-State Mortality Estimation for IHD

The studies in literature state that IHD has %40 of death rate [8]. Two state Markov
process is employed at which the first column and row represent having IHD and
the second column and row represent death from this illness. Transition matrix, then
becomes

P =

(
p11 p12
p21 p22

)
where pij , i, j = 1, 2, defines
p11=P(having IHD in year t+ 1 | having IHD in year t)
p12=P(death in year t+ 1 | having IHD in year t)
p21=P(having IHD in year t+ 1 | death in year t)=0
p22=P(death in year t+ 1 | death in year t)=1

with the condition
∑
pij = 1.

Therefore, the probability of being alive with IHD at time t is determined by pt =
exp(−λt). This approach leads to the probability of death because of IHD given that
the patient is already diagnosed, p12, and the transition rates, λ12, under the same
conditions to be calculated. Table 5 illustrates these results for the ages selected in
gender details. The morbidity rates and transition rates are found to be realistic, high
in infant and young ages.

4.3. Three-State Morbidity and Mortality Estimation for IHD

This framework require the augmentation of the total population into two parts, a
part having IHD and the other not having IHD. Based on the IHD data the parti-
tioning of the total population is done with respect to the mortality tables taken into
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Table 5. Two-state Mortality estimation for IHD for some selected ages

p12 λ12
Age Male Female Male Female

0 0.15720 0.15414 0.18651 0.18222
25 0.13829 0.13498 0.16048 0.15604
45 0.08427 0.10350 0.09203 0.11545
58 0.05847 0.07694 0.06210 0.08335
65 0.05315 0.06817 0.05614 0.07316

consideration in the first part of this study. These tables are modified in such a way
that, the death probabilities is composed of the rates from non-IHD and IHD groups.
we refresh the mortality rates of the total population by separating non IHD people
mortality and IHD people mortality rates. Therefore, three state transition matrix

P =

 p11 p12 p13
p21 p22 p23
p31 p32 p33


determines the probabilities pij , (i, j = 1, 2, 3) as follows:
p11=P(non-IHD in year t+ 1 | non-IHD in year t)
p12=P(IHD in year t+ 1 | non-IHD in year t)
p13=P(death in year t+ 1 | non-IHD in year t)
p21=P(non-IHD in year t+ 1 | IHD in year t)
p22=P(IHD in year t+ 1 | IHD in year t)
p23=P(death in year t+ 1 | IHD in year t)
p31=P(non-IHD in year t+ 1 | death in year t)
p32=P(IHD in year t+ 1 | death in year t)
p33=P(death in year t+ 1 | death in year t)

where
∑
pij = 1.

Furthermore, as there is no recovery from this disease, p21 = 0 and the last state is
taken as the absorbing state, p31 = 0, p32 = 0 and p33 = 1. Similarly, λ12 represents
the transition rate from non-IHD state to IHD state. λ13 is the transition rate from
non-IHD state to death state, λ23 is the transition rate from IHD state to death. As
there are no recoveries, λ21 = 0 and there are no transitions between death states, λ31,
λ32 and λ33 are equal to 0. In addition, λii = −

∑
λij , i 6= j has to be justified. Thus,

λ11 = −(λ12 + λ13) and λ22 = −λ23.
In order to define phase type distribution in three-state Markov process, we need to

define, α, initial distribution coefficients, according to the proportion of IHD caused
deaths with respect to the total deaths for each age and gender in the three consecutive
years. Because, the cause of deaths among IHD population may not necessarily be
from the illness but other reasons. This study assumes that, IHD patients die only as
a consequence of this disease as we do not have any other specific information on the
reasons of disappearance. For example, chosing α = (0.5 0.5 0) implies half of the IHD
patients die in the first year whereas the second half disappears the year after.

Implementation of the methodology followed as in the two-state case, the transi-
tion probabilities and rates are calculated for each gender and presented in Table 6.
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Here, p12 and p32 values represent the IHD-morbidity rates, IHD-mortality rates for
Turkish population, respectively and p13 corresponds to the death rate from other
reasons. Morbidity rates are much higher in males compared to females, however, the
probability of death from IHD are close in both genders. The similar pattern is almost
observed in transition rates.

Table 6. Three-state transition probabilities and rates of IHD mortality and morbidity
Gender Age p12 p13 p23 λ12 λ13 λ23
Male 0 0.00044 0.02906 0.15414 0.00055 0.01528 0.18651

25 0.00666 0.00110 0.13496 0.00055 0.00071 0.16048
45 0.03537 0.00348 0.10350 0.00071 0.00248 0.09203
58 0.11881 0.01499 0.07694 0.00148 0.01097 0.06210
65 0.11933 0.02613 0.06817 0.00175 0.01813 0.05614

Female 0 0.00055 0.01505 0.15719 0.00044 0.02993 0.18222
25 0.00057 0.00072 0.13829 0.00631 0.00104 0.15604
45 0.00075 0.00255 0.08427 0.03222 0.00234 0.11545
58 0.00168 0.01136 0.05847 0.08437 0.0039 0.08335
65 0.00220 0.01898 0.05315 0.04956 0.00279 0.07316

The values refer to the transition rates from non-IHD state to IHD state. To illus-
trate the influence of the IHD-morbidity transition rate on the population represented
by different mortality tables, λij (i = 1, 2 and j = 2, 3) values are calculated and given
in Table 6. Being in exposure to IHD makes the transition to death faster which can
be seen in the values of λ23. Infant and young age mortality rates for IHD are too high
because of the frailty of this age period.

5. Concluding Comments

This study employs Markov model and phase type distribution which is commonly
used approach in health studies but rarely employd in morbidity estimation, to deter-
mine the improvement in the mortality and morbidity rates based on an application
to Turkish data. This study questions if mortality tables can be improved and if mor-
bidity rate due to a certain disease can be quantified using phase type distribution.
Additionally, it extends two-state model to a three-state for the estimation of mortal-
ity resulting from the specified disease in total population. The approach proposed is
applied to Turkish mortality tables and data collected from SSI on IHD. The results
indicate that two-state approach to estimate the mortality has a good agreement on
young, middle and selected retirement ages. However, changes in older ages which will
give a better capture in longevity risks. Additionally, IHD caused morbidities are es-
timated by proposed approach for Turkey first time. Extension to three-state in IHD
morbidity and mortality enables researchers to predict which portion of the mortality
rates correspond to IHD-caused deaths.
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