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By analyzing an e™ e~ data sample corresponding to an integrated luminosity of 2.93 fb~! taken ata center-
of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fractions of the Cabibbo-
favored hadronic decays D — K=z, D° — K%2%', and D™ — K$z*y/, which are determined to be
(6.4340.154,£0.31 ) X 1073, (2.5240.22, +-0. 154) X 1073, and (1.90 & 0.17, + 0.134y5) x 1073,

respectively. The precision of the branching fraction of D° — K~z%# is significantly improved, and the

PHYS. REV. D 98, 092009 (2018)

processes D° — K97% and D" — K3z’ are observed for the first time.

DOI: 10.1103/PhysRevD.98.092009

I. INTRODUCTION

Hadronic decays of D mesons provide important infor-
mation to understand the weak and strong interactions in
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the charm sector. Various experiments have measured the
branching fractions of hadronic decays of D mesons [1].
However, the measurement accuracy of the Cabibbo-
favored (CF) decays D — Kzyf/ is still very poor [1].
The Particle Data Group (PDG) gives a branching fraction
of (0.75 £ 0.19)% for D° — K~z "n/, which was measured
by the CLEO collaboration 25 years ago [1,2]. There are
no measurements for the isospin-related decay modes
D° - K4z%' and D' — K%z"y/. The statistical isospin
model (SIM) proposed in Refs. [3,4] predicts a simple ratio
of the branching fractions for the isospin multiplets:
B(D° - K=z*y):B(D° - K$z%'):B(D* — K$z'ty)=

RO Rt = 1 BOU=Ka) | BOTSK) L .
DROIRY =1 ity s i S — 1:0.4:0.9.

Precision measurements of the branching fractions of
D — Ky are crucial to test the SIM prediction.

In this paper, we report an improved measurement of the
branching fraction for D° — K=zt#/ and the first mea-
surements of the branching fractions for D° — K%z% and
D" — K3x*y. The analysis is performed using an e"e~
annihilation data sample corresponding to an integrated
luminosity of 2.93 fb=! [5] collected with the BESIII
detector [6] at /s = 3.773 GeV. At this energy, relatively
clean D° and D' meson samples are obtained from
the processes ete™ — y(3770) — D°D° or D*D~. To
improve statistics, we use a single-tag method, in which
either a D or D is reconstructed in an event. Throughout the
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text, charge conjugated modes are implied, and DD refers
to D°D® and D* D~ unless stated explicitly.

I1. BESIII DETECTOR AND
MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer that
operates at the BEPCII collider. It has a cylindrical
geometry with a solid-angle coverage of 93% of 4z. It
consists of several main components. A 43-layer main drift
chamber (MDC) surrounding the beam pipe performs
precise determinations of charged particle trajectories
and measures the specific ionization energy loss (dE/dx)
for charged particle identification (PID). An array of time-
of-flight counters (TOF) is located outside the MDC and
provides additional PID information. A CsI(Tl) electro-
magnetic calorimeter (EMC) surrounds the TOF and is
used to measure the deposited energies of photons and
electrons. A solenoidal superconducting magnet outside the
EMC provides a 1 T magnetic field in the central tracking
region of the detector. The iron flux return of the magnet
is instrumented with the resistive plate muon counters
arranged in nine layers in the barrel and eight layers in the
endcaps for identification of muons with momenta greater
than 0.5 GeV/c. More details about the BESIII detector
are described in Ref. [6].

A Monte Carlo (MC) simulation software package,
based on GEANT4 [7], includes the geometric description
and response of the detector and is used to determine the
detection efficiency and to estimate backgrounds for each
decay mode. An inclusive MC sample, which includes the
D°D°, D* D~ and non-DD decays of the y(3770), initial-
state-radiation (ISR) production of the w(3686) and J /v,
the continuum process ete™ — qg (¢ = u, d, s), Bhabha
scattering events, dimuon events, and ditau events, is
produced at /s = 3.773 GeV. The equivalent luminosity
of the inclusive MC sample is ten times that of the data
sample. The w(3770) decays are generated with the MC
generator KKMC [8], which incorporates the effects of ISR
[9]. Final-state-radiation (FSR) effects are simulated with
the PHOTOS package [10]. The known decay modes are
generated using EVTGEN [11] with branching fractions
taken from the PDG [1], while the remaining unknown
decays are generated using LUNDCHARM [12].

III. EVENT SELECTION

In this analysis, all charged tracks are required to be
within |cos@| < 0.93, where 6 is the polar angle with
respect to the positron beam. Good charged tracks, except
those used to reconstruct Kg mesons, are required to
originate from the interaction region defined by V,, <
lecm and |V,| <10 cm, where V,, and |V,| are the
distances of the closest approach of the reconstructed
tracks to the interaction point (IP), perpendicular to and
along the beam direction, respectively.

Charged kaons and pions are identified using the dE/dx
and TOF measurements. The combined confidence levels
for the kaon and pion hypotheses (CLg and CL,) are
calculated and the charged track is identified as kaon (pion)
if CLk(y is greater than CL, k).

The neutral kaon is reconstructed via the K(S’ -t
decay mode. Two oppositely charged tracks with
V.| <20 cm are assumed to be a z*z~ pair without
PID requirements and the z*"z~ pair is constrained
to originate from a common vertex. The z#tz~ combina-
tion with an invariant mass M,+,- in the range
| Myt - = Mgo| < 0.012 GeV/c?, where M is the nomi-
nal Kg mass [1], and a measured flight distance from the
IP greater than twice its resolution is accepted as a K3
candidate. Figure 1(a) shows the z"z~ invariant mass
distribution, where the two solid arrows denote the Kg
signal region.

Photon candidates are selected using the EMC informa-
tion. The time of the candidate shower must be within
700 ns of the event start time and the shower energy should
be greater than 25 (50) MeV if the crystal with the
maximum deposited energy for the cluster of interest is
in the barrel (endcap) region [6]. The opening angle
between the candidate shower and any charged track is
required to be greater than 10° to eliminate showers
associated with charged tracks. Both z° and # mesons
are reconstructed via the yy decay mode. The yy combi-
nation with an invariant mass within (0.115,0.150) or
(0.515,0.570) GeV/c? is regarded as a #° or 5 candidate,
respectively. To improve resolution, a one constraint (1-C)
kinematic fit is applied to constrain the invariant mass of
the photon pair to the nominal z° or # invariant mass [1].

The 5/ mesons are reconstructed through the decay
i’ — n"x~n. The invariant mass of the 7z~ combination
M 4+ -, is required to satisfy |M,+ -, —M,/|<0.015GeV/c?,
where M, is the nominal 7’ mass [1]. The boundaries
of the one dimensional (1D) #’ signal region are illustrated
by the two solid arrows shown in Fig. 1(b). The D) —
K= (K$)x"n' decay is selected from the K~ (K%)ztatzn
combination. Since the two z's in the event have low
momenta and are indistinguishable, the " may be formed
from either of the z*z~n combinations, whose invariant
masses are denoted as M., and M, -,. Figure 1(c)
shows the scatter plot of M i oy versus M-, for the
D° — K~z"y candidate events in the data sample. Events
with at least one #7775 combination in the two dimen-
sional (2D) # signal region, shown by the solid lines in
Fig. 1(c), are kept for further analysis.

To distinguish D mesons from backgrounds, we define
two kinematic variables, the energy difference AE =
Ep — Epean and the beam-constrained mass Mpc =

El.. — |Pp|’, where Ep, and pj, are the energy and
momentum of the D candidate in the e™ e~ center-of-mass

092009-4



OBSERVATION OF ...

PHYS. REV. D 98, 092009 (2018)

F T T T T T R
S0 4
_ L (@ ]
T T ]
Z 60 _
= - ]
hu’ L |
Z 40 [
5 C I
> F [
= - -
20— |
- -
|
0.46 0.48 0.50 0.52 0.54
M,., (GeV/c)
F T T 3]
400 .
_ E o (b) ]
T O f ]
% 300 ]
= - ]
o o | | | | ]
20 I | =
Ewb | I
100~ | | [
r | | | | b
C | |
0.90 0 95 1.00
M, o (GeV/c)
F T ™
12F -
T nf .
> C ]
L3
S C 1
: 1.0 r —___‘__j ]
= ]
oL aE s e i J .
09F ]
0.8 e
0.8 1.1 1.2
M, (GeV/c?)
FIG. 1. (a) Distribution of M+ ,- for the K0 candidates from
D — K%z% decays and (b) the combined M,,+,,7,7 and M-,

distribution for the #' candidates from D° — K~z"#' decays,
where the dots with error bars are data, the histograms
are inclusive MC samples, and the pairs of red solid (blue
dashed) arrows show the boundaries of the K% or ' 1D signal
(sideband) region. (c) Scatter plot of M+ versus M+ -

zr n Ty
for the D° — K~z candidate events in the data sample
where the range surrounded by the red solid (blue dashed)
lines denotes the #' 2D signal (sideband) region. In these
figures, except for the K% or #/ mass requirement, all selection
criteria and an additional requirement of |Mpc—Mp| <
0.005 GeV/c? have been imposed. The signal and sideband
regions, illustrated here, are applied for all decays of interest in
the analysis.

TABLE I. AE requirements, input quantities and results for the
determination of the branching fractions. The efficiencies do not
include the branching fractions for the decays of the daughter
particles of 7/, 7, K(S), and 7° mesons. The uncertainties are
statistical only.

Decay mode AE (MeV) Ny, € (%) B (x1073)

DY K- 7t+ (=26, +28) 2528 £59 10.97 +0.08 6.43 £0.15
D°— K92% (=35,+38) 289426 4.67+0.04 2.52+0.22
DT — K(S)zﬁn’ (=27,428) 267+24 7.234+0.051.90+0.17

system and Ey.,, is the beam energy. For each signal decay
mode, only the combination with the minimum |AE| is kept
if more than one candidate passes the selection require-
ments. Mode-dependent AE requirements, as listed in
Table I, are applied to suppress combinatorial backgrounds.
These requirements are about +3.56, around the fitted
AE peaks, where o, is the resolution of the AE distri-
bution obtained from fits to the data sample.

IV. DATA ANALYSIS

The My distributions of the accepted candidate events
for the decays of interest in the data sample are shown in
Fig. 2. Unbinned maximum likelihood fits to these spectra
are performed to obtain the D signal yields. In the fits, the
D signal is modeled by an MC-simulated shape convolved
with a Gaussian function with free parameters accounting
for the difference between the detector resolution of the
data and that of the MC simulation. The background shape
is described by an ARGUS function [13]. The potential
peaking backgrounds are investigated as follows. The
combinatorial 77z~ (called BKGI) or ntz~#n (called
BKGII) pairs in the K‘S) or 1 signal region may survive
the event selection criteria and form peaking backgrounds
around the D mass in the My distributions. These back-
ground components are validated by the data events in
the K9(n') sideband region defined as O. 020(0 022) <
)| < 0.044(0.046) GeV/c?, as indi-

cated by the ranges between the adjacent pair of blue
dashed arrows in Fig. 1(a)[(b)]. For D° - K~z"# and
Dt — K%ty decays, the data events in the 7/ 2D side-
band region, enclosed by the blue dashed lines in Fig. 1(c),

are examined. For these events, either M tan O M ﬂ+,ﬂ7 is

|Mﬂ'ﬂ‘(n+ﬂ‘n) 1‘41(O

in the # 1D sideband region, but both are outside the ' 1D
signal region. These two background components are
normalized by the ratios of the magnitude of the back-
grounds in the K%(y/') signal and sideband regions. The
background components from other processes (called
BKGIII) are estimated by analyzing the inclusive MC
sample. The scaled Mpc distributions of the surviving
events for the BKGI, BKGII, and BKGIII components are
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FIG. 2. Fits to the My distributions of the (a) D° — K~z7¢/,
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dots with error bars are data, the blue solid curves are the total fits
and the red dashed curves are the fitted backgrounds. The dotted,
dashed and solid histograms are the scaled BKGI, BKGII, and
BKGIII components (see the last paragraph of Sec. I1I), respectively.

shown as the dotted, dashed, and solid histograms in Fig. 2,
respectively. In these spectra, no peaking backgrounds are
found, which indicates that the background shape is well
modeled by the ARGUS function. From each fit, we obtain
the number of D — Kz signal events Nye, as summarized
in Table I. The statistical significances of these decays,
which are estimated from the likelihood difference between
the fits with and without the signal component, are all
greater than 106.

Figure 3 shows the M, M/, and M, distributions of
D — Kny' candidate events for data and MC simulations
after requiring |Mgc — Mp| < 0.005 GeV/c?. No obvious
subresonances have been observed in these invariant mass
distributions. Nevertheless, the phase space (PHSP) MC
distributions are not in good agreement with the data
distribution (see the blue dashed histograms and dots with
errors in Fig. 3). To solve this problem, we modify the MC
generator to produce the correct invariant mass distribu-
tions according to the Dalitz plot distributions in data. In
the Dalitz plot, the background component is modeled by
the inclusive MC simulation, while the signal component
is generated according to efficiency-corrected PHSP MC
simulation. In Fig. 4, we show the Dalitz plots of D —
K7ty candidate events for data and the modified MC
sample. The invariant mass distributions Mg,, M,,, and
My, of the modified MC samples are in good agreement
with the data distributions (see the red solid histograms and
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- K (S)ﬂ+;7’ candidate events, respectively. The blue dashed histograms are PHSP

MC samples. The red solid histograms are the modified MC samples. The yellow shaded histograms are the backgrounds estimated from the
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dots with errors in Fig. 3). In the following, we use the
modified MC sample to determine the detection efficiencies
in the calculation of the branching fractions.

V. BRANCHING FRACTIONS

The branching fraction of D — Kzy' is determined
according to

B(D — Knn') = (1)

2. Npp -€- Bn’ : Bn('Binter) ’

where Ny, is the number of D — Krn' signal events, Npj,
is the total number of DD pairs, € is the detection efficiency
which has been corrected by the differences in the
efficiencies for charged particle tracking and PID, as well
as 7° and 5 reconstruction, between the data and MC
simulation as discussed in Sec. IV, and summarized
in Table I. In Eq. (1), Bjye is the product branching
fraction By - By (Bgo) for the decay D’ — Kgz'nf/
(D - K%x*y), and By, B,, Bgy and B, denote the

TABLE II.

branching fractions of the decays n' — ztz ™5, n - yy,
K% — ntz~, and 7° — yy, respectively, taken from the
PDG [1]. With the single-tag method, the CF decays
D°(D*) — Kzn' are indistinguishable from the doubly
Cabibbo-suppressed (DCS) decays D°(D*) — K(K)z'.
However, the DCS contributions are expected to be
small and negligible in the calculations of branching
fractions, but will be taken into account as a systematic
uncertainty.

Taking  Npopo = (10597 & 28, £ 98,y5) X 10°  and
Npip- = (8296 £ 31y £ 654) X 10> from Ref. [14],
the branching fraction of each decay is determined with
Eq. (1) and summarized in Table I.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the measurements of
the branching fractions and the branching ratios, R® =
B(D— KO D+—>K0n’+1/
W nd R" = WK”;;
Table II. Each contribution, estimated relative to the
measured branching fraction, is discussed below.

(i) Number of DD pairs: The total numbers of D°D°

and DD~ pairs produced in the data sample are
cited from a previous measurement [14] that uses a
combined analysis of both single-tag and double-tag
events in the same data sample. The total uncertainty
in the quoted number of D°D®(D* D) pairs is 1.0%
(0.9%), obtained by adding both the statistical and
systematic uncertainties in quadrature.

(ii) Tracking and PID of K*(x*): The tracking and PID
efficiencies for K*(z™) are investigated using dou-
ble-tag DD hadronic events. A small difference
between the efficiency in the data sample and that
in MC simulation (called the data-MC difference)

are summarized in

Relative systematic uncertainties (in %) in the branching fractions, R°, and R*. The numbers before

or after */’ in the last two columns denote the remaining systematic uncertainties of B(D° — K~z ty/) and
B(D°*) — K92°+)y) that do not cancel in the determination of R° and R*.

Source B(D° - K-z"y') B(D° - K2%') B(D" — Kiz'y) RO R
Number of DD pairs 1.0 1.0 0.9 /- 1.0/0.9
Tracking of K*(z%) 3.0 2.0 2.5 1.0/- 1.0/-
PID of K*(z%) 2.0 1.0 1.5 1.0/- 0.5/-
K reconstruction 1.5 1.5 /1.5 /1.5
7°(n) reconstruction 1.0 2.0 1.0 /1.0 -/
Mie fit 0.5 3.6 1.9 05/3.6 0.5/1.9
7' mass window 1.0 1.0 1.0 -/- -/-
AE requirement 0.1 24 45 0.1/24 0.1/45
MC modeling 1.6 0.5 1.7 1.6/0.5 1.6/1.7
MC statistics 0.7 0.9 0.7 0.7/0.9 0.7/0.7
Quoted branching fractions 1.7 1.7 1.7 -/0.1 -/0.1
DD mixing 0.1 0.1 /- /-
DCS contribution 0.6 0.6 0.6 -/- -/-
Total 4.8 6.0 6.6 53 6.0

092009-7



M. ABLIKIM et al.

PHYS. REV. D 98, 092009 (2018)

(iif)

(iv)

)

(vi)

is found. The momentum weighted data-MC
differences in the tracking [PID] efficiencies are
determined to be (2.4 £0.4)%, (+1.0+0.5)%,
and (+1.9 £ 1.0)% [(-0.2 £ 0.1)%, (-0.1 £ 0.1)%
and (—=0.2+£0.1)%] for K*, n3 .. and m_g .
respectively. Here, the uncertainties are statistical
and the subscript gieet OF in—direct indicates the 7+
produced in D or 5 decays, respectively. In this
work, the MC efficiencies have been corrected by
the momentum weighted data—MC differences in the
K*(n*) tracking and PID efficiencies. Finally, a
systematic uncertainty for charged particle tracking
is assigned to be 1.0% per 7i-_j; .., and 0.5% per K*
or 7. The systematic uncertainty for PID effi-
ciency is taken as 0.5% per K*, 7 . or 7_4 ..
K reconstruction: The K reconstruction efficiency,
which includes effects from the track reconstruction
of the charged pion pair, vertex fit, decay length
requirement and Kg mass window, has been studied
with a control sample of J/y — K*(892)FTK* and
J/w — ¢KYK*=xT [15]. The associated systematic
uncertainty is assigned as 1.5% per K(S).

7%(n) reconstruction: The #° reconstruction effi-
ciency, which includes effects from the photon
selection, 1-C kinematic fit and z° mass window,
is verified with double-tag DD hadronic decay
samples of D°— K—z*, K ztz*z~ versus
D° —» Kz~ 2% K97° [16]. A small data-MC differ-
ence in the 7° reconstruction efficiency is found.
The momentum weighted data-MC difference
in 7% reconstruction efficiencies is found to be
(=0.5 4+ 1.0)%, where the uncertainty is statistical.
After correcting the MC efficiencies by the
momentum weighted data-MC difference in 7°
reconstruction efficiency, the systematic uncertainty
due to 7 reconstruction is assigned as 1.0%
per n°. The systematic uncertainty due to 7
reconstruction is assumed to be the same as that
for z° reconstruction.

' mass window: The uncertainty due to the 7’ mass
window is studied by fitting to the "z~ 7 invariant
mass spectrum of the K~ z"#' candidates. The
difference between the data and MC simulation in
the efficiency of the #' mass window restriction is
(0.8 4+ 0.2)%. The associated systematic uncertainty
is assigned as 1.0%.

My fit: To estimate the systematic uncertainty due
to the Mpc fit, we repeat the measurements by
varying the fit range [(1.8415, 1.8865) GeV/c?], the
signal shape (with different MC matching require-
ments) and the endpoint (1.8865 GeV/c?) of the
ARGUS function (+0.2 MeV/c?). Summing the
relative changes in the branching fractions for
these three sources in quadrature yields 0.5%,

3.6%, and 1.9% for D° — K=z, D° - K%z,
and D™ — K9z, respectively, which are assigned
as systematic uncertainties.

(vil) AE requirement: To investigate the systematic un-
certainty due to the AE requirement, we repeat the
measurements with alternative AE requirements of
3.00,r and 4.00 5 around the fitted AE peaks. The
changes in the branching fractions, 0.1%, 2.4%,
and 4.5%, are taken as systematic uncertainties for
D° - K=nty/, D° - K%z, and D — K%z'y,
respectively.

(viii)) MC modeling: The systematic uncertainty in the MC
modeling is studied by varying MC-simulated
background sizes for the input M%,  and M}zz )
distributions in the generator by +20%. The largest
changes in the detection efficiencies, 1.6%, 0.5%,
and 1.7% are taken as systematic uncertainties for
D’ - K-nty/, D° - K%z, and D" — K%'y,
respectively.

(ix) MC statistics: The uncertainties due to the limited
MC statistics are 0.7%, 0.9%, and 0.7% for
D° —» K=zty/, D° - K%z, and D* — K%z'y,
respectively.

(x) Quoted branching fractions: The uncertainties of the
quoted branching fractions for ' — ztz7n, n = vy,
K% — 7z, and 7° — yy are taken from the world
average and are 1.6%, 0.5%, 0.07%, and 0.03% [1],
respectively.

(xi) D°D° mixing: Because D°D° meson pair is coher-
ently produced in y(3770) decay, the effect of D°D°
mixing on the branching fractions of neutral D
meson decays is expected to be due to the next-
to-leading-order of the D°D® mixing parameters
x and y [17,18]. With x =(0.32+0.14)% and
y = (0.6970:9)% from PDG [1], we conservatively
assign 0.1% as the systematic uncertainty.

(xii)) DCS contribution: Based on the world-averaged
values of the branching fractions, the branching
fraction ratios between the known DCS decays
and the corresponding CF decays are in the range
of (0.2-0.6)%. Therefore, we take the largest ratio
0.6% as a conservative estimation of the systematic
uncertainty of the DCS effects.

The above relative systematic uncertainties are added
in quadrature, and a total of 4.9%, 6.1%, 6.6%, 5.3%,
and 6.0% for the measurements of B(D — K=z'r/),
B(D° - K%x°), B(D™ = K%x™n'), R®, and R, respec-
tively, is obtained.

VII. SUMMARY AND DISCUSSION

Based on an analysis of an e"e~ data sample with an
integrated luminosity of 2.93 fb~! collected at /s =
3.773 GeV with the BESIII detector, we measure the
branching fractions of hadronic D meson decays to
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be: B(D®— K ztn') =(6.434£0.154, £0.31) x 1072,
B(D° - K%z%') = (2.52 £ 0.22, & 0.1545) ¥ 1073, and
B(D" = Kzt n') = (1.9040.174, +0.13) x 1073, The
measured branching fraction of D° — K~z"7' is consistent
with the previous result measured by CLEO [1,2], but
improved with a factor of 4 in precision. The branching
fractions of D — K%' and D™ — Kin'y/ are deter-
mined for the first time.

Using the measured branching fractions, we determine
the ratios of branching fractions to be R’=
0.3940.0345+0.024y. and R*=0.3040.03, £0.02.
RO agrees well with the value 0.4 predicted by the SIM,
but R significantly deviates from the expected value 0.9.
This deviation may arise from a possible phase difference
between two isospin states in the SIM [19]. In our analysis,
we do not find an obvious K* signal in the Kz invariant
mass distributions, which is consistent with the predic-
tions of small D° — K*%y and D™ — K**i/ contributions
[20-22].

Summing over the branching fractions of D — Kay/
decays and the other exclusive D — #'X decays in PDG [1],
we obtain the sums of the branching fractions of all the
exclusive D° — 5'X and Dt — #'X to be (3.23 +0.13)%
and (1.06 + 0.07)%, respectively. They are consistent with
the measured inclusive production B(D° - y'X) =
(248 +0.27)% and B(D' - n'X)=(1.04£0.13)%
[23] within 2.5¢ and 0.1c, respectively. This excludes
the possibility of additional exclusive D — #'X decay
modes with large branching fractions.
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