Crystal Structure of 2,4,4,6,6-Pentachloro-2-(2,4,6-trimethylphenoxy)cyclo- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triphosphazatriene

Tuncer Hökelek,*^{1†} Nurcan Akduran,*¹ Adem Kiliç,*² Saliha Begeç,*³ and Zeynel Kiliç*⁴

*1 Hacettepe University, Department of Physics, 06532 Beytepe-Ankara, Turkey

*2 Gebze Institute for Technology, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey

*3 İnönü University, Department of Chemistry, Malatya, Turkey

*4 Ankara University, Department of Chemistry, 06100 Tandoğan-Ankara, Turkey

(Received August 6, 1999; Accepted November 4, 1999)

The phenoxy derivatives of 2,2,4,4,6,6-hexachlorocyclo- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triphosphazatriene, N₃P₃Cl₆, have potential use in the preparation of new small organocyclophosphazenes and high polymeric phosphazene derivatives with inorganic backbones and aryloxy side groups.¹ The structures of the organic, inorganic or organometallic side groups are highly effective in determining the specific physical and chemical properties of phosphazene polymers.

The title compound was prepared from a mixture of 2,4,6-trimethylphenol (5.37 g, 0.012 mol), Na (0.500 g, 0.022 mol)

Fig. 1 Chemical structure.

Table 1 Crystal and experimental data

and $N_3P_3Cl_6$ (4.18 g, 0.012 mol) in THF (100 mL) according to the literature.² The residue was dissolved in hexane and set aside for crystallization. The results of an X-ray structure determination are given in Tables 1 – 3.

The title molecule (Fig. 2) contains a non-polar cyclic trimeric phosphazene ring with a 2,4,6-trimethylphenoxy group attached to the P2 atom. The three N atoms are displaced on opposite sides (+ and –) with respect to the plane through the P atoms, as follows: N1 –0.193(6), N3 –0.008(5), N5 +0.253(7)Å.

The ranges of the P-N-P and N-P-N bond angles are 120.1(5) – 122.5(5)° and 116.0(4) – 117.8(4)°, respectively. In tetrameric phosphazenes, the P-N-P bond angles range between 133.6(2) and 139.3(2)° as found in 2-(2,6-di-*t*-butyl-4-methylphenoxy)-2,4,4,6,6,8,8-heptachlorocyclo- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$, $8\lambda^5$ -tetraphosphazatetraene.³ The interatomic distance, O1···H71= 2.382(7)Å, indicates a possible hydrogen bond.

The P-N bond distances vary between 1.539(8) and 1.602(9)Å. In related compounds,⁴⁻⁶ the corresponding bond lengths are 1.57(1) - 1.60(1)Å. In trimeric phosphazenes, the P-N bond lengths may be correlated with the orbital

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

Formula: $C_9H_{11}N_3OP_3Cl_5$	parameters	parameters			
Formula weight = 447.39	Atom	x	у	z	$B_{ m eq}$ /Å
Crystal system: monoclinic					
Space group: $C2/c$ $Z = 8$	Cl1	0.2907(3)	0.8101(3)	0.2545(1)	6.29(9)
a = 11.237(1)Å	Cl2	0.1437(2)	0.6008(3)	0.2112(1)	5.52(8)
b = 11.785(2)Å	C13	0.5899(2)	0.6297(3)	0.3551(1)	5.85(8)
c = 27.371(1)Å	Cl4	0.5196(2)	0.3872(2)	0.3189(1)	4.81(8)
$\beta = 101.06(1)$	C15	0.1165(3)	0.4514(3)	0.3638(1)	5.82(9)
	P2	0.2373(2)	0.5758(2)	0.3646(1)	3.41(7)
V = 3557.4(7)Å	P4	0.4442(2)	0.5347(2)	0.3279(1)	3.32(7)
$D_{\rm x} = 1.671 \ {\rm g/cm^3}$	P6	0.2580(2)	0.6515(2)	0.2714(1)	3.48(7)
R = 0.075 $wR = 0.071$	01	0.2216(5)	0.6416(6)	0.4132(2)	3.91(9)
$(\Delta/\sigma)_{\rm max} = 0.01$	N1	0.1936(7)	0.6513(7)	0.3188(3)	4.07(9)
$(\Delta \rho)_{\rm max} = 0.45 \ {\rm e}{\rm \AA}^{-3}$	N3	0.3685(7)	0.5237(7)	0.3714(3)	3.68(8)
$(\Delta \rho)_{\rm min} = -0.34 \text{ e}\text{\AA}^{-3}$	N5	0.3754(7)	0.5802(7)	0.2763(3)	4.09(7)
Radiation: Cu K_{α}	C1	0.3186(9)	0.6748(9)	0.4505(4)	3.79(7)
No. of reflections used = 1402	C2	0.3745(9)	0.7792(9)	0.4468(4)	3.89(7)
Measurements: Enraf-Nonius CAD-4 diffractometer	C3	0.4643(10)	0.8108(9)	0.4858(4)	4.47(8)
	C4	0.4988(10)	0.7454(10)	0.5279(4)	4.66(8)
Program system: CAD-4-EXPRESS Software	C5	0.4418(10)	0.6415(9)	0.5298(4)	4.28(9)
Structure determination: SHELXS86	C6	0.3520(9)	0.6043(9)	0.4920(4)	3.81(8)
Treatment of hydrogen atoms: geometric calculation	C7	0.2908(9)	0.4938(9)	0.4953(4)	4.71(7)
Refinement: full-matrix least-squares	C8	0.3361(10)	0.8543(10)	0.4029(5)	5.73(9)
-	— С9	0.6012(12)	0.7847(11)	0.5708(5)	6.25(9)

[†] To whom correspondence should be addressed.

 $B_{\rm eq} = (8\pi^2/3)\Sigma_i\Sigma_jU_{ij}a_i^*a_j^*(\boldsymbol{a}_i\cdot\boldsymbol{a}_j).$

		-	
Cl1-P6	1.977(4)	P6-N5	1.548(8)
C12- P6	1.977(3)	O1-C1	1.399(7)
Cl3- P4	2.005(3)	C1-C2	1.394(7)
Cl4-P4	1.970(3)	C1-C6	1.400(8)
C15-P2	1.995(4)	C2-C3	1.372(7)
P2-O1	1.579(7)	C2-C8	1.488(9)
P2-N1	1.539(8)	C3-C4	1.379(8)
P2-N3	1.575(8)	C4-C5	1.387(8)
P4-N3	1.596(9)	C4-C9	1.549(7)
P4-N5	1.569(8)	C5-C6	1.371(8)
P6-N1	1.602(9)	C6-C7	1.483(9)
Cl5-P2-O1	100.6(3)	P2-O1-C1	123.7(6)
C15-P2-N3	109.5(3)	P6-N1-P2	122.5(5)
CI5-P2-N1	107.8(3)	P4-N3-P2	120.1(5)
O1-P2-N3	110.2(4)	P4-N5-P6	121.9(5)
01-P2-N1	109.4(4)	O1-C1-C6	118.5(9)
N3-P2-N1	117.8(4)	O1-C1-C2	119.5(9)
Cl4-P4-Cl3	101.5(2)	C6-C1-C2	121.9(9)
Cl4-P4-N3	109.0(3)	C1-C2-C3	117.2(8)
Cl4-P4-N5	109.8(3)	C1-C2-C8	121.2(7)
C13-P4-N3	106.4(3)	C8-C2-C3	121.5(8)
Cl3-P4-N5	111.7(3)	C4-C3-C2	123.1(8)
N3-P4-N5	117.3(4)	C5-C4-C9	121.1(9)
Cl1-P6-N5	109.9(3)	C5-C4-C3	117.8(9)
Cl1-P6-N1	108.9(3)	C9-C4-C3	121.0(8)
Cl2-P6-N1	110.6(3)	C4-C5-C6	122.1(7)
Cl2-P6-Cl1	102.2(2)	C5-C6-C7	121.1(7)
Cl2-P6-N5	108.3(3)	C1-C6-C5	117.8(9)
N5-P6-N1	116.0(4)	C1-C6-C7	121.0(9)

Table 3 Bond distances (Å) and angles (°)

electronegativities of groups of atoms, as in the tetrameric phosphazenes. The short bonds in the ring have an appreciable double-bond character. The phenoxy group is very effective in determining the shape of the molecule.

Fig. 2 Molecular structure of the title compound with atomnumbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

References

- H. R. Allcock, A. A. Dembek, M. N. Mang, G. H. Riding, M. Parvez, and K. B. Visscher, *Inorg. Chem.*, **1992**, *31*, 2734.
- 2. T. Hökelek, A. Kılıç, S. Begeç, and Z. Kılıç, *Acta Crystallogr.*, **1999**, *C55*, 783.
- 3. T. Hökelek, A. Kılıç, S. Begeç, Z. Kılıç, and M. Yıldız, *Acta Crystallogr.*, **1996**, *C52*, 3243.
- J. K. Fincham, M. B. Hursthouse, H. G. Parkes, L. S. Shaw, and R. A. Shaw, *Acta Crystallogr.*, 1986, *B42*, 462.
- 5. H. R. Allcock, I. Manners, M. N. Mang, and M. Parvez, *Inorg. Chem.*, **1990**, *29*, 522.
- A. Kılıç, S. Begeç, B. Çetinkaya, T. Hökelec, Z. Kılıç, N. Gündüz, and M. Yıldız, *Heteroatom. Chem.*, 1996, 7, 249.