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Abstract. We investigate a class of operators connecting general Hamiltonians of the Pöschl-
Teller type. The operators involved depend on three parameters and their explicit action on
eigenfunctions is found. The whole set of intertwining operators close a su(2, 2) ≈ so(4, 2)
Lie algebra. The space of eigenfunctions supports a differential-difference realization of an
irreducible representation of the su(2, 2) algebra.

1. Introduction
The aim of this work is to find in a systematic way a general class of operators connecting
Hamiltonians of the Pöschl-Teller class and to characterize their algebraic properties.

This is a problem that has been studied since a long time ago, and therefore one can find
many partial results scattered in the literature. However, as we will see along the next sections,
by approaching this problem in a quite general way we are able to find a complete dynamical
algebra that was not considered up to now which closes a su(2, 2) Lie algebra structure.

Let us mention that the Hamiltonians we will deal with are related to the so called “shape-
invariant potentials” [1], since some operators will change just the parameters in the same
family of potentials. Sometimes the algebraic structure is called “potential algebra” [2], in
order to be distinguished from the invariance algebras of a given Hamiltonian. Other type of
operators are said to belong to “spectrum generating algebras” [3] since they may change also the
energy eigenvalues of the Hamiltonians. A term wide enough to include any kind of intertwining
operators in this work is “dynamical algebra” of the P-T hierarchy, since we are dealing with
general operators connecting Hamiltonians in a given family. The operators conserving the
value of the energy are termed “shift” operators (generating the potential algebra), while those
changing the energy have a “ladder” flavour [4].

Here we will remind some references where one can find other approaches to this problem.
The paper by Barut, Inomata and Wilson [5] worked the potential algebras of P-T Hamiltonians.
More general dynamical algebras were considered in a series of papers by Quesne [6]. Other works
concerned with spectrum generating operators of the P-T potentials are the book by Lange and
Raab [7], and some others [8, 9]. In this paper we will follow closely the model of a previous
work [10] devoted to the symmetric P-T potentials.

The contents of this work is the following. In section 2 we will summarize some results of
standard factorizations [11] applied to the present case in order to get shift operators. Next,
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in section 3 we will introduce a different kind of factorizations suitable to get ladder operators.
Finally, in section 4 we will put together all the operators to define the dynamical algebra and
we will end with some concluding remarks.

2. Standard shift-factorizations
We consider the following type of one-dimensional Pöschl-Teller Hamiltonians

Hα,β = −∂2
φ +

α2 − 1/4
cos2 φ

+
β2 − 1/4

sin2 φ
, 0 < φ < π/2 (1)

where α, β are real constants.

2.1. A first set of “shift” operators, M±

The Hamiltonian (1) is part of a “hierarchy of Hamiltonians” {Hα+n,β+n}, n ∈ Z, that has the
following factorization property

Hα,β = M+
α,βM

−
α,β + µα,β = M−

α−1,β−1M
+
α−1,β−1 + µα−1,β−1 (2)

where
M±
α,β = ±∂φ − (α+ 1/2) tanφ+ (β + 1/2) cotφ (3)

and
µα,β = (α+ β + 1)2 (4)

The discrete eigenvalues of each Hamiltonian Hα,β are related with the ground energy of the
hierarchy {Hα+n,β+n} as follows. We will consider the ground states annihilated by the operators
M−
α,β,

M−
α,βψ

0
(α,β) = 0 ⇒ ψ0

(α,β) = K0
(α,β)cosφα+1/2 sinφβ+1/2 (5)

where K0
(α,β) is a normalizing constant. The corresponding energy eigenvalue is given, according

to (2), by
E0

(α,β) = µα,β = (α+ β + 1)2 (6)

The action of these factor operators on eigenfunctions of the Hamiltonian hierarchy derived from
the intertwining relation (2), up to normalization coefficients, is

M−
α,β : ψn(α,β) → ψn−1

(α+1,β+1)

M+
α,β : ψn−1

(α+1,β+1) → ψn(α,β)

(7)

where ψn(α,β) denotes an eigenfunction of Hα,β corresponding to the eigenvalue En(α,β) and n is
for the energy level of the corresponding Hamiltonian. We say that they are “shift operators”
that change the potential parameters but keep the value of energy since

En(α,β) = E0
(α+n,β+n) = (α+ β + 2n+ 1)2, n = 0, 1, 2 . . . (8)

As the differential operators M±
α,β are Hermitian conjugated, we can easily obtain the coefficients

of their action
M+
α−1,β−1ψ

n
(α,β) = 2

√
n(α+ β + n− 1)ψn+1

(α−1,β−1) (9)

and
M−
α−1,β−1ψ

n+1
(α−1,β−1) = 2

√
n(α+ β + n− 1)ψn(α,β) (10)
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We can define “free index operators” M̃± = 1
2M

± connecting eigenfunctions of consecutive
Hamiltonians in this hierarchy according to (7), so that the relevant commutators have the form

[M̃−, M̃+] = −2M̃, [M̃, M̃±] = ±M± (11)

and where the diagonal operator M̃ is defined by

M̃ψn(α,β) = −1
2

(α+ β + 2n)ψn(α,β) (12)

Therefore these “tilde operators” span a su(2) Lie algebra.
Henceforth it will be convenient to introduce also a “three-subindex” notation for

eigenfunctions,
Hα,β ψ(α,β,ε) = Eε ψ(α,β,ε)

Eε = ε2, ψ(α,β,ε) ≡ ψn(α,β), ε = α+ β + 2n+ 1
(13)

From the factorization properties (2) and making use of the new notation, the action of the M̃±

operators can be expressed in the form
M̃−ψ(α,β,ε) = 1

2

√
(ε+ α+ β + 1)(ε− α− β − 1)ψ(α+1,β+1,ε)

M̃+ψ(α+1,β+1,ε) = 1
2

√
(ε+ α+ β + 1)(ε− α− β − 1)ψ(α,β,ε)

M̃ψ(α,β,ε) = −1
2(α+ β)ψ(α,β,ε)

(14)

In this notation it is evident that these operators change the potential parameters α, β but leave
the energy parameter ε fixed.

2.2. Second set of shift operators: N±

In a similar way we find another set of factorization operators,

Hα,β = N+
α,βN

−
α,β + να,β = N−

α+1,β−1N
+
α+1,β−1 + να+1,β−1 (15)

where
N±
α,β = ±∂φ + (α− 1/2) tanφ+ (β + 1/2) cotφ (16)

and
να,β = (−α+ β + 1)2 (17)

This new set of operators leads to the hierarchy {Hα−m,β+m} with eigenvalues

Emα,β = E0
α−m,β+m = (−α+ β + 2m+ 1)2 (18)

The action of the new factor operators on the eigenfunctions of this hierarchy is as follows

N−
α,β : ψ̃m(α,β) → ψ̃m−1

(α−1,β+1)

N+
α,β : ψ̃m−1

(α−1,β+1) → ψ̃m(α,β)

(19)

They are also shift operators that change the potential parameters but keep the value of energy:
Em(α,β) = Em−1

(α−1,β+1).
Free index operators can be introduced together with rescaling factors:

Ñ± =
1
2
N±, Ñ ψ̃n(α,β) = −1

2
(−α+ β + 2n)ψ̃n(α,β) (20)
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so that we get another su(2) Lie algebra,

[Ñ , Ñ±] = ±Ñ±, [Ñ−, Ñ+] = −2Ñ (21)

The explicit action of these operators on the eigenfunctions ψ(α,β,ε) is
Ñ−ψ̃(α,β,ε) = 1

2

√
(ε− α+ β + 1)(ε+ α− β − 1) ψ̃(α−1,β+1,ε)

Ñ+ψ̃(α−1,β+1,ε) = 1
2

√
(ε− α+ β + 1)(ε+ α− β − 1) ψ̃(α,β,ε)

Ñψ̃(α,β,ε) = −1
2(−α+ β)ψ̃(α,β,ε)

(22)

We have checked that the two su(2) Lie algebras introduced up to now spanned by the
generators {M̃±, M̃} and {Ñ±, Ñ} commute, leading to a direct sum su(2) ⊕ su(2). The
unitary representations compatible with the conditions on the parameters α, β are just “square
representations”, j ⊗ j, with 2j = n ∈ Z+, and dimension n2.

3. Ladder factorizations
3.1. Ladder X± and W± operators
In order to get ladder operators that change energy eigenvalues, we will start from the initial
Hamiltonian with parameters (α, β) applied to an eigenfunction ψn(α,β) with eigenvalue given in
(8)

Hα,βψ
n
(α,β) = En(α,β)ψ

n
(α,β) = (α+ β + 2n+ 1)2 ψn(α,β) (23)

Here, it will be helpful to use the “three subindex notation” valid for general eigenvalues:

Hα,βψ(α,β,ε) = Eεψ(α,β,ε) = ε2ψ(α,β,ε) (24)

Now, we want to change the value of β and conserve that of α, so we will multiply the equation
Hα,β ψ(α,β,ε) = Eε ψ(α,β,ε) by cos2 φ, to obtain(

− cos2 φ∂2
φ + (α2 − 1/4) + (β2 − 1/4) cot2 φ

)
ψn(α,β) = ε2 cos2 φψn(α,β) (25)

and rewrite it in the form(
− cos2 φ∂2

φ + (β2 − 1/4) cot2 φ− ε2 cos2 φ
)
ψn(α,β) = −(α2 − 1/4)ψn(α,β) (26)

For simplicity we introduce the notation hβ,ε for the relevant differential operator of the previous
equation

hβ,ε = − cos2 φ∂2
φ + (β2 − 1/4) cot2 φ− ε2 cos2 φ (27)

thus, (26) becomes
hβ,ε ψ(α,β,ε) = −(α2 − 1/4)ψ(α,β,ε) (28)

Then, we are able to factorize the differential operator (27) in the usual way

hβ,ε = X+
β,εX

−
β,ε + ξβ,ε = X−

β−1,ε−1X
+
β−1,ε−1 + ξβ−1,ε−1 (29)

where
X±
β,ε = ± cosφ∂φ +

β + 1/2
sinφ

+ (ε+ 1/2± 1/2) sinφ (30)

and
ξβ,ε = −(β + ε+ 3/2)(β + ε+ 1/2) (31)
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Therefore, the action of these ladder operators on eigenfunctions is as follows

X−
β,ε : ψ(α,β,ε) → ψ(α,β+1,ε+1)

X+
β,ε : ψ(α,β+1,ε+1) → ψ(α,β,ε)

(32)

Since in this relation Eε 6= Eε±1 (or En(α,β) 6= En(α,β±1)), we are dealing with ladder operators in
the sense that they change the energy eigenvalue (as well as other parameters of the potential)
of the eigenfunctions of the associated Hamiltonian hierarchy.

Starting from X̃±, X̃, we can find Hermitian conjugated differential operators by means of
suitable coefficients [12] X̃±, X̃ given by

X̃−
α,β,ε =

1
2

√
ε+ 1
ε

X−
α,β,ε , X̃+

α,β,ε =
1
2

√
ε

ε+ 1
X+
α,β,ε (33)

and their action on normalized eigenfunctions is
X̃−ψ(α,β,ε) = 1

2

√
(β + ε+ α+ 1)(β + ε− α+ 1)ψ(α,β+1,ε+1)

X̃+ψ(α,β+1,ε+1) = 1
2

√
(β + ε+ α+ 1)(β + ε− α+ 1)ψ(α,β,ε)

X̃ψ(α,β,ε) = −1
2(β + ε)ψ(α,β,ε)

(34)

There is a second factorization of the differential operator (27), that we write as follows [12]

W±
β,ε = ± cosφ∂φ −

β − 1/2
sinφ

+ (ε+ 1/2± 1/2) sinφ (35)

so that
hβ,ε = W+

β,εW
−
β,ε + ωβ,ε = W−

β+1,ε−1W
+
β+1,ε−1 + ωβ+1,ε−1 (36)

and
ωβ,ε = −(−β + ε+ 3/2)(−β + ε+ 1/2) (37)

As before, the action of the Hermitian conjugated operators W̃±, W̃ has the following form
W̃−ψ(α,β,ε) = 1

2

√
(−β + ε+ α+ 1)(−β + ε− α+ 1)ψ(α,β−1,ε+1)

W̃+ψ(α,β−1,ε+1) = 1
2

√
(−β + ε+ α+ 1)(−β + ε− α+ 1)ψ(α,β,ε)

W̃ψ(α,β,ε) = −1
2(−β + ε)ψ(α,β,ε)

(38)

3.2. Ladder Y ± and Z± operators
Next, we will obtain ladder operators changing the value of α and maintaining the value of β.
To this end, we will multiply the eigenvalue equation (23) by sin2 φ,(

− sin2 φ∂2
φ + (α2 − 1/4) tan2 φ+ (β2 − 1/4)

)
ψn(α,β) = En(α,β) sin2 φψn(α,β) (39)

We can make use of the “three subindex notation”, with the third subindex ε, by starting with
the redefinition of the differential operator in (39) as

gα,ε = − sin2 φ∂2
φ + (α2 − 1/4) tan2 φ− ε2 sin2 φ (40)
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Then, we can find the factorization

gnα,ε = Y +
α,εY

−
α,ε + ηα,ε = Y −

α−1,ε−1Y
+
α−1,ε−1 + ηα−1,ε−1 (41)

with
Y ±
α,ε = ∓ sinφ∂φ +

α+ 1/2
cosφ

+ (ε+ 1/2± 1/2) cosφ (42)

and
ηα,ε = −(α+ ε+ 3/2)(α+ ε+ 1/2) . (43)

The action of the corresponding Hermitian conjugated operators [12] on normalized ψ(α,β,ε)

eigenfunctions is
Ỹ −ψ(α,β,ε) = 1

2

√
(α+ ε+ β + 1)(α+ ε− β + 1)ψ(α+1,β,ε+1)

Ỹ +ψ(α+1,β,ε+1) = 1
2

√
(α+ ε+ β + 1)(α+ ε− β + 1)ψ(α,β,ε)

Ỹ ψ(α,β,ε) = −1
2(α+ ε)ψ(α,β,ε)

(44)

Finally, we will define a last set of ladder operators by factorizing (40) as

gα,ε = Z+
α,εZ

−
α,ε + ζnα,ε = Z−α+1,ε−1Z

+
α+1,ε−1 + ζα+1,ε−1 (45)

where
ζα,ε = −(−α+ ε+ 3/2)(−α+ ε+ 1/2) (46)

The Hermitian conjugated operators Z̃± can be defined in same way as the Ỹ ± operators. Their
action is 

Z̃−ψ(α,β,ε) = 1
2

√
(−α+ ε+ β + 1)(−α+ ε− β + 1)ψ(α−1,β,ε+1)

Z̃+ψ(α−1,β,ε+1) = 1
2

√
(−α+ ε+ β + 1)(−α+ ε− β + 1)ψ(α,β,ε)

Z̃ψ(α,β,ε) = −1
2(−α+ ε)ψ(α,β,ε)

(47)

4. Complete dynamical algebra
Now, we will consider the whole set of lowering and raising operators of the previous sections
together: {M̃±, Ñ±, X̃±, W̃±, Ỹ ±, Z̃±}, including those having a “shift” or “ladder” character.
The diagonal operators {M̃, Ñ , X̃, W̃ , Ỹ , Z̃} can be expressed as linear combinations of three
independent diagonal operators {Dα, Dβ, Dε} defined by

Dαψ(α,β,ε) = αψ(α,β,ε) , etc. (48)

Therefore, in all we have 15 independent operators closing the following commutations relations:

[X̃−, M̃+] = −Z̃−, [X̃−, Ñ+] = −Ỹ −, [W̃+, M̃+] = −Ỹ +,

[W̃+, Ñ+] = −Z̃+, [Ỹ +, Ñ+] = X̃+, [Ỹ −, M̃+] = W̃−,

[Ỹ −, X̃+] = −Ñ+, [Ỹ −, W̃+] = M̃−, [Z̃+, M̃+] = X̃+,

[Z̃−, Ñ+] = W̃−, [Z̃−, X̃+] = −M̃+, [Z̃−, W̃+] = Ñ−,

(49)

where we have included only some non-vanishing commutators of different sets. These relations
correspond to the so(4, 2) ≈ su(2, 2) Lie algebra, including the subalgebra su(2)⊕su(2) generated
by shift operators.

We will end this work by remarking some features of our dynamical algebra.
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• We have proposed a general factorization scheme in the line of [13] where there are three
parameters: α and β for potentials and ε for energies (for more details see [12]).

• We have obtained a general solution for the intertwining operators under these general
conditions.
• Different operators are related by means of reflections as it has been shown in [12].
• The whole set of intertwining operators close a Lie algebra su(2, 2). Other approaches

leading to intertwining operators can be seen in [14, 15, 16].
• From this intertwining operators we can get ‘pure’ ladder operators leading to an spectrum

generating algebra [12]. These operators have a classical analogue closing a classical
spectrum generating algebra [17], which is relevant in studying the properties of coherent
states [18, 19].
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