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*Correspondence:
abazari@uma.ac.ir
1Department of Mathematics and
Applications, University of
Mohaghegh Ardabili, Ardabil, Iran
Full list of author information is
available at the end of the article

Abstract
In this paper, the stationary acceleration of the spherical general helix in a
3-dimensional Lie group is studied by using a bi-invariant metric. The relationship
between the Frenet elements of the stationary acceleration curve in 4-dimensional
Euclidean space and the intrinsic Frenet elements of the Lie group is outlined. As a
consequence, the corresponding curvature and torsion of these curves are
computed. In Minkowski space, for the curves on a timelike surface to have a
stationary acceleration, a necessary and sufficient condition is refined.
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1 Introduction
Rigid body motion has attracted continuous attention since the time of Galileo and
Bernoulli, and recently, the subject has generated a renewed interest in differential ge-
ometry. SE() is the space of all rigid body motions, and the motions can be described as
curves in this space []. In , Noakes, Heinzinger and Paden [] derived the equations
for the minimum acceleration curve by using positive definite bi-invariant metrics on the
rotation group SO(). By Noakes et al. [], the specification of spline curves was extended
to curves in groups associated with robotics. By using left-invariant metrics, Zefran and
Kumar [] in  used the same acceleration definition for the rigid body as the covariant
derivative of the motion, and so the jerk is the second covariant derivative. In , Selig
[] repeated the analysis by using bi-invariant metrics on the rigid body motion group
SE(). Since these metrics are not positive definite, the curves specified by differential
equations are derived only stationary, not minimal. In , Bottema and Roth [] studied
a number of spatial motions by using the D representation of SE(), one of which is the
Serret-Frenet motion. Finding the curve with given curvature and torsion functions in-
volves solving a system of differential equations given by the Serret-Frenet relations. This
is not straightforward, and solutions are only known in a very few cases as studied by Lip-
kin [] in  and Selig [] in . In this work, the ideas of Zefran and Kumar [] and
Selig [] are revisited. Kula et al., in [], investigated the relations between a general helix
and a slant helix. By using the Serret-Frenet frame in a -dimensional Lie group with a
bi-invariant metric, the stationary acceleration of the spherical general helix is studied. It
is proved that the normal curvature, geodesic curvature and geodesic torsion functions of
the curves on a timelike surface in the Minkowsky space are linear.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1354-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1354-7&domain=pdf
http://orcid.org/0000-0001-6821-5911
mailto:abazari@uma.ac.ir


Abazari et al. Journal of Inequalities and Applications  (2017) 2017:92 Page 2 of 13

2 General helix in a Lie group
Let G be a -dimensional Lie group with the bi-invariant metric 〈·, ·〉. Suppose ∇ is the
corresponding Levi-Civita connection. If g denotes the Lie algebra of G, then the isomor-
phism g � TeG holds, where e is the identity element of G. As is known,

〈
X, [Y , Z]

〉
=

〈
[X, Y ], Z

〉
and ∇XY =




[X, Y ]

hold for all X, Y , Z ∈ g . Also, for any X, Y ∈ g , the vector product X × Y is defined by

〈Z, X × Y 〉 = det(Z, X, Y ) for all Z ∈ g.

Definition . (General helix, see [], Definition ) Let α : I → G be a parameterized
curve, where I ⊂ R. Then α is called a general helix if it makes a constant angle with a
left-invariant vector field.

If I ⊂ R and α : I → G is a curve parameterized with arc length and if the Frenet struc-
ture of α is denoted by (t, n, b,κ , τ ), then

τG =


〈
[t, n], b

〉
.

Theorem . (Lancret, see [], Theorem ) A curve is a general helix in G if and only if
τ = cκ + τG, where c is a constant.

Definition . (Left shift, see [], Definition ) Let I ⊂ R and α : I → G be an arc length
parameterized curve. Then a curve β : I → g , where g is the Lie algebra of G, for which
β ′(s) = dLα–(s)α

′(s) for all s ∈ I , is called the left shift of α.

Definition . (Spherical curve, see [], Definition ) α is called a spherical curve if β lies
on the unit central sphere, i.e., 〈β(s),β(s)〉 =  for all s ∈ I .

Theorem . (See [], Proposition ) A curve α is the spherical general helix with τ =
cκ + τG if and only if

κ(s) =
√

 – cs
, τ (s) =

c√
 – cs

+ τG.

In the Lie group G, a spherical motion is determined by a unit speed space curve α(s).
In the Serret-Frenet motion, a point on the moving body moves along the curve and the
coordinate frame on the moving body remains aligned with the tangent t, normal n and
bi-normal b of the curve. Using the D representation of G, the motion can be specified
as

G(s) =

(
R(s) α(s)

 

)

, (.)

where α is the curve, and the rotation matrix has the unit vectors t, n and b as columns of

R = (t | n | b).
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Set ∇tx = x′ for all x ∈ {t, n, b}. Now the intrinsic Serret-Frenet formulas are

t′ = κn, n′ = –κt + τb, b′ = –τn,

where κ and τ are the curvature and torsion functions of the curve, respectively. The Dar-
boux vector ω = τ t + κb has the properties

t′ = ω × t, n′ = ω × b, b′ = ω × n,

see [], Section .. This means that

R′ = �ωR

can be written for the × anti-symmetric matrix �ω , which is corresponding to ω. Since
α is a unit speed curve, we have α′ = t, and hence

V = G′G– =

(
�ω t – ω × α

 

)

.

Using the Serret-Frenet relations, the derivative of the velocity can be calculated as

V ′ =

(
�ω′ t′ – ω′ × α

 

)

,

where ω′ = τ ′t + κ ′b. Hence, the second derivative of the velocity is

V ′′ =

(
�ω′′ –ω′′ × α – κ ′n

 

)

,

where n = b × t and ω′′ = τ ′′t + (τ ′κ – κ ′τ )n + κ ′′b. Finally, G–V ′′G is computed as

G–V ′′G =

⎛

⎜⎜⎜
⎝

 –κ ′′ τ ′κ – κ ′τ 
κ ′′  –τ ′′ –κ ′

κ ′τ – τ ′κ τ ′′  
   

⎞

⎟⎟⎟
⎠

. (.)

Since the curve α is a stationary acceleration curve,

G–V ′′G = C

holds, see []. Thus, there exist constants c, c, c, c such that

G–V ′′G = C =

⎛

⎜⎜⎜
⎝

 –c c 
c  –c –c

–c c  
   

⎞

⎟⎟⎟
⎠

. (.)
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By setting up this equation for the two unknowns κ and τ , the system of differential equa-
tions

κ ′′ = c, τ ′κ – κ ′τ = c, τ ′′ = c, κ ′ = c

holds, and as a consequence, the following theorem is true.

Theorem . The general spherical helix is a stationary acceleration curve in a Lie group
G with the bi-invariant metric if and only if κ =  and τ is linear.

Proof Let the curve α be a general spherical helix in the Lie group G. Then τ = cκ + τG,
where c is a constant. α is a stationary acceleration curve, and due to (.) and (.), κ ′ =
c is satisfied. Therefore, κ = cs + c, and from κ(s) = √

–cs , c =  is obtained. Hence,
κ = , and so c = τ ′κ – κ ′τ = τ ′

G. Therefore, τG = cs + c, where c is a constant. Finally,
τ = c + τG = a + bs, where a = c + c and b = c are constants and τ ′′ = . Hence, κ =  and
τ is linear. Conversely, if κ =  and τ is linear, then obviously κ and τ satisfy the stationary
acceleration curve condition (.). �

3 Spherical general helix
For I ⊂R, α : I → S, the unit sphere with the center at origin in R

 is an immersed curve
in a -dimensional real space form. Therefore, any curve on S can also be considered to be
a curve in R

. In this paper, the goal is to obtain the relationship between the Frenet frame
(e | e | e | e) in -dimensional Euclidean space with the curvature functions ki = 〈e′

i, ei+〉
for i = , ,  and the intrinsic Frenet frame (t | n | b) with the curvature κ = 〈t′, n〉 and
torsion τ = 〈n′, b〉 of the curve α. Set t = e. By using the Gauss map of the sphere,

κ =
√

k
 –  (.)

and

τ =
k

 k

κ (.)

hold, see [].

Theorem . A unit speed space curve α : I ⊂ R → S parameterized with arc length is a
stationary acceleration curve if and only if

k = ±
√

(as + b) + 

and

k =
(as + b)(ps + q)

(as + b) + 
,

where a, b, p, q are constants and ki is the ith principle curvature of the curve α for i = , 
in -dimensional Euclidean space.
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Proof Suppose α is a unit speed space curve on S. It is known that, in the Frenet-Serret
motion, a point on the moving body moves along the curve α and the coordinate frame
in the moving body remains aligned with the tangent t, normal n and bi-normal b of this
curve. By using the D representation, the motion can be specified in the form (.) such
that the corresponding rotation matrix of motion is R = (t|n|b). The curve α is a stationary
acceleration curve if and only if G–V ′′G = C, where C is the  ×  constant matrix as
in (.). By substituting k = x in (.), κ =

√
x –  is obtained, and from (.), we get

κ ′ = c. From

κ ′ = c, τ ′′ = c, τ ′κ – κ ′τ = c,

we have

c = τ ′κ – cτ and  = τ ′′κ + τ ′κ ′ – cτ
′ = cκ .

Since κ �= , we get c = . Hence,

κ = cs + b and τ = ps + q.

On the other hand, it is clear that

κ =
√

k
 –  and τ =

k
 k

k (.)

are satisfied. Therefore, for c = a, we obtain

k = ±√
κ +  = ±

√
(as + b) +  (.)

and

k =
τκ

k


=
τκ

κ + 
=

(as + b)(ps + q)
(as + b) + 

, (.)

and by using c = , we get

G–V ′′G = C =

⎛

⎜⎜⎜
⎝

  c 
   –c

–c   
   

⎞

⎟⎟⎟
⎠

,

where C is a  ×  constant matrix such that k and k satisfy the stationary acceleration
condition of α. Conversely, if k and k satisfy (.) and (.), then, from (.) and (.), we
have κ = as + b and τ = ps + q. Thus, from (.), G–V ′′G is a  ×  constant matrix, and
so α is a stationary acceleration curve. �

4 Curves on a timelike surface
The Minkowski spacetime R


 is the Euclidean space R

 with the inner product

〈x, y〉 = –xy + xy + xy, where x = (x, x, x), y = (y, y, y) ∈R
.
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A vector v ∈ R

 \ {} is spacelike, timelike or lightlike if 〈v, v〉 > , 〈v, v〉 <  or 〈v, v〉 = .

The vector v =  is spacelike. Also, the norm of a vector v is given by ‖v‖ =
√|〈v, v〉|.

Let X : U →R

 be a timelike embedding, where U is an open subset of R. The tangent

space TpM is a timelike plane at any p ∈ X(U), where M = X(U). Let γ : I → U be a regular
curve and define the curve γ : I → M ⊂ R


 on the timelike surface by γ (s) = X(γ ). Let γ

be spacelike or timelike on the timelike surface M with the unit tangent vector t(s) = γ ′(s),
where s is the arc-length parameter. Since M = X(U) is timelike, a unit spacelike normal
vector field n on M = X(U) is defined by

n(p) =
Xu (u) × Xu (u)

‖Xu (u) × Xu (u)‖ for all p = X(u).

Then nγ = n ◦ γ is a unit spacelike normal vector field along γ . The bi-normal vector field
is defined by (ε ◦ γ )b = nγ × t. It is known that

〈t, t〉 = ε ◦ γ , 〈nγ , nγ 〉 = , 〈nγ , b〉 = , 〈b, b〉 = –(ε ◦ γ ),

where ε ◦ γ = sgn(t) which equals  when γ is spacelike and equals – when γ is timelike.
When ε(γ (s)) = , the semi-orthonormal frame is (b(s) | nγ (s) | t(s)), and when ε(γ (s)) = –,
the semi-orthonormal frame is (t(s) | b(s) | nγ (s)). Therefore, we have

b(s) × nγ (s) = –ε
(
γ (s)

)
t(s) and t(s) × b(s) = –nγ .

For

kn(s) =
〈
nγ (s), t′(s)

〉
, kg(s) =

〈
b(s), t′(s)

〉
, τg(s) =

〈
nγ (s), b′(s)

〉
,

the Frenet equations are

t′ = –(ε ◦ γ )kgb + knnγ , n′
γ = (ε ◦ γ )τgb – (ε ◦ γ )knt,

b′ = τgnγ – (ε ◦ γ )kgt,

and these are called normal curvature, geodesic curvature and geodesic torsion, respec-
tively []. Now we suppose t′(s) �= . The Darboux vector field in two cases ε(γ (s)) = ±
is

ω(s) = –τg(s)t(s) – kg(s)nγ (s) + kn(s)b(s).

Therefore,

ω × t = t′, ω × nγ = n′
γ , ω × b = b′.

Also, we have

ω′ = –τ ′
g t – k′

gnγ + k′
nb
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and

ω′′ =
(
–τ ′′

g + (ε ◦ γ )k′
gkn – (ε ◦ γ )k′

nkg
)
t

+
(
–k′′

g – τ ′
gkn + k′

nτg
)
nγ

+
(
k′′

n + (ε ◦ γ )τ ′
gkg – (ε ◦ γ )k′

gτg
)
b

= At + Anγ + Ab,

where

A = –τ ′′
g + (ε ◦ γ )k′

gkn – (ε ◦ γ )k′
nkg ,

A = –k′′
g – τ ′

gkn + k′
nτg ,

A = k′′
n + (ε ◦ γ )τ ′

gkg – (ε ◦ γ )k′
gτg .

Let �ω be the anti-symmetric × matrix corresponding to the Darboux vector field ω,
so

�ω =

⎛

⎜
⎝

 –kn –kg

kn  τg

kg –τg 

⎞

⎟
⎠

and

�ω′′ =

⎛

⎜
⎝

 –A A

A  –A

–A A 

⎞

⎟
⎠ .

By using the D representation of SE(), the motion can be specified as

G(s) =

(
R(s) γ (s)

 

)

,

where

R(s) =
(
t(s) | b(s) | nγ (s)

)
if ε

(
γ (s)

)
= –

and

R(s) =
(
b(s) | nγ (s) | t(s)

)
if ε

(
γ (s)

)
= +.

From the properties of the Darboux vector, we can write R′ = �ωR. Hence, we have

V = G′G– =

(
�ω t – ω × γ

 

)

.
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Therefore,

V ′′ =

(
�ω′′ –ω′′ × γ – ω′ × t

 

)

=

(
�ω′′ –ω′′ × γ – k′

g(ε ◦ γ )b – k′
nnγ

 

)

,

and thus

G–V ′′G =

(
RT –RTγ

 

)(
�ω′′ –ω′′ × γ – k′

g(ε ◦ γ )b – k′
nnγ

 

)(
R γ

 

)

=

(
RT�ω′′R –k′

nRT nγ – (ε ◦ γ )k′
gRT b

 

)

.

By using the standard formulas for the scalar and vector products of t, nγ and b, we can
write

G–V ′′G =

⎛

⎜⎜⎜
⎝

 –A A 
A  –A –k′

n

–A A  –(ε ◦ γ )k′
g

   

⎞

⎟⎟⎟
⎠

,

where A, A and A are as mentioned above. From G–V ′′G = C, where C is a  × 
constant matrix, we obtain

k′
n(s) = c and k′

g(s) = c.

Then

kn(s) = cs + a, kg(s) = cs + a, k′′
g (s) = , k′′

n(s) = .

Also, from

–τ ′′
g (s) + ε

(
γ (s)

)
k′

g(s)kn(s) – ε
(
γ (s)

)
k′

n(s)kg(s) = c,

–τ ′
g(s)kn(s) + k′

n(s)τg(s) = c,

ε
(
γ (s)

)
τ ′

g(s)kg(s) – ε
(
γ (s)

)
k′

g(s)τg(s) = c,

we can obtain τg(s) = as + b. Hence, we have the following result.

Theorem . A curve on the timelike surface in Minkowski space is a stationary accelera-
tion curve if and only if its normal curvature, geodesic curvature and geodesic torsion are
linear functions.
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5 Curves on Minkowski spacetime
The Minkowski spacetime R


 is the Euclidean space R

 with the inner product

〈x, y〉 = –xy + xy + xy + xy, where x = (x, x, x, x), y = (y, y, y, y) ∈R
.

A vector v ∈R

 \{} is spacelike, timelike or lightlike if 〈v, v〉 > , 〈v, v〉 <  or 〈v, v〉 = . The

vector v =  is spacelike. Also, the norm of a vector v is given by ‖v‖ =
√|〈v, v〉|. Let α be a

unit speed timelike or spacelike curve with (e | e | e | e) as the Frenet frame in R

 and

set 〈ei, ei〉 = εi ∈ {–, }, i = , , , . We can define the curvature functions by ki = 〈e′
i, ei+〉

for i = , , . Therefore, the Frenet equations are

⎛

⎜⎜⎜
⎝

e′


e′


e′


e′


⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

 kε  
–kε  kε 

 –kε  –kεεε

  –kε 

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

e

e

e

e

⎞

⎟⎟⎟
⎠

.

Also, the vector x × y × z is defined by

x × y × z =

∣∣∣∣∣∣∣∣∣

–i j k l
x x x x

y y y y

z z z z

∣∣∣∣∣∣∣∣∣

,

here {i, j, k, l} is the canonical basis of R
 and

x = (x, x, x, x), y = (y, y, y, y), z = (z, z, z, z) ∈ R
.

Then, for any t ∈ R

 , we can write 〈t, x × y × z〉 = det(t, x, y, z). Thus, x × y × z is semi-

orthogonal to x, y and z. A normal curve in R

 is a curve whose position vector always lies

in its normal space e⊥
 = {w ∈ R


 : 〈w, e〉 = }.

Theorem . (See [], Theorem .) Let α be a unit speed timelike or spacelike curve with
non-lightlike vector fields e, e, e, lying in R


 . Then α is congruent to a normal curve if

and only if

kε

k

(

k

)′
= ε

[

k

(
k

k
+ εε

((

k

)′ 
k

)′)]′
.

Theorem . (See [], Formula (.)) Let α be a unit speed timelike or spacelike normal
curve with non-lightlike vector fields e, e, e, lying in R


 . Then its position vector satisfies

the equation

α = –
ε

k
e –

εε

k

(

k

)′
e –

ε

k

(
k

k
+ εε

((

k

)′ 
k

)′)
e.

Let M be a hypersurface in R

 with the induced Levi-Civita connection ∇ of R

 . Let
α : I → M be a non-lightlike immersed unit speed curve in M, and let us denote the Frenet
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frame by (t | n | b). The Frenet equations are

t′ = ∇tt = κn, n′ = ∇tn = εbκt + τb, b′ = ∇tb = εtτn,

where εX = 〈X, X〉 and κ , τ are curvature and torsion functions, respectively, and t, n, b
satisfy the equations

b × n = εtt, t × b = εnn, n × t = εbb.

The Darboux vector field is ω = –εbτ t – εnκb. Therefore, we have

ω × t = t′, ω × n = n′, ω × b = b′.

Also, we have

ω′ = –εbτ
′t – εnκ

′b

and

ω′′ = –εbτ
′′t – εb

(
τ ′κ – κ ′τ

)
n – εnκ

′′b.

If R = (t | n | b) is the rotation matrix and �ω is the corresponding  ×  anti-symmetric
matrix to the Darboux vector ω, then

�ω′′ =

⎛

⎜
⎝

 εnκ
′′ –εb(τ ′κ – κ ′τ )

–εnκ
′′  εbτ

′′

εb(τ ′κ – κ ′τ ) –εbτ
′′ 

⎞

⎟
⎠ ,

where α′ = t. Therefore, for the motion

G(s) =

(
R(s) α(s)

 

)

,

from the properties of the Darboux vector, we have

R′ = �R and V = G′G–.

Hence,

V ′′ =

(
�ω′′ –ω′′ × α – ω′ × t

 

)

=

(
�ω′′ –ω′′ × α – εnκ

′n
 

)

and

G–V ′′G =

⎛

⎜⎜⎜
⎝

 εnκ
′′ –εb(τ ′κ – κ ′τ ) 

–εnκ
′′  εbτ

′′ –εnκ
′

εb(τ ′κ – κ ′τ ) –εbτ
′′  

   

⎞

⎟⎟⎟
⎠

= C,
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where C is a × constant matrix, which is the necessary and sufficient condition for non-
lightlike immersed curves α : I → M in the hypersurface M ⊂ R


 to be an acceleration

curve. Then, by G–V ′′G = C, we obtain

κ = as + b and τ = ps + q,

where a, b, p, q are constants and s is the arc-length parameter of the curve α.
Let (e | e | e | e) be the Frenet frame of the normal curve α as a unit speed timelike

or spacelike normal curve with non-lightlike vector fields e, e, e, lying in R

 . Let the

curvature functions of α be k, k, k. Then

t′ = e′
 – ε

〈
e′

,α
〉
α = εk

(
e – ε〈e,α〉α)

,

where 〈v, v〉 = ε with v the unit normal vector field to the hypersurface M inR

 and 〈ei, ei〉 =

εi ∈ {–, }, i = , , , . Also, by using the Gauss map [] and Theorem ., we can write

n =
t′

‖t′‖ =
e – ε〈e,α〉α
√

 – ε〈e,α〉
,

and from Theorem ., we can write

κ =
〈
t′, n

〉
= k

√
 – ε〈e,α〉 =

√
k

 – ε.

The bi-normal vector is

α × t × n =
k√

k
 – ε

α × e × e =


√
 – ε

k


α × e × e.

Therefore,

b′ =
(


√

 – ε

k


)′
α × e × e +

εk√
 – ε

k


α × e × e.

Then 〈b′,α〉 = . Finally,

τ = –
〈
b′, n

〉
= –

〈
εk√
 – ε

k


α × e × e,


√
 – ε〈e,α〉

e

〉

= –
〈

εk√
 – ε

k


α × e × e,


√
 – ε

k


e

〉

= –
εk

 – ε

k


〈α × e × e, e〉

=
εkk


κ .

Hence, we have proved the following result.
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Theorem . Let M be a hypersurface in R

 and I ⊂ R. Let α : I → M be a unit speed

timelike or spacelike normal curve with non-lightlike vector fields e, e, e, lying in R

 .

Then α is an acceleration curve in M if and only if

k = ±
√

(as + b) + ε

and

k =
ε(as + b)(ps + q)

(as + b) + ε
,

where a, b, p, q are constants and ki is the ith principle curvature of the curve α for i = , 
in R


 and 〈v, v〉 = ε with v the unit normal vector field to the hypersurface M in R


 and

〈e, e〉 = ε.

6 Results and discussion
In this paper, it is proved that the general spherical helix is the stationary acceleration
curve in a Lie group with a bi-invariant metric if and only if its curvature is unit and tor-
sion is linear. The relationship between the Frenet elements of the stationary acceleration
curve in -dimensional Euclidean space and the intrinsic Frenet elements of the Lie group
is obtained. In other words, the necessary and sufficient conditions for stationary acceler-
ation of unit speed spherical curves are studied, and as a consequence, the corresponding
curvature and torsion of these curves are derived.
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