Measurement of the integrated luminosities of the data taken by BESIII at $\sqrt{s} = 3.650$ and 3.773 GeV

To cite this article: M. Ablikim et al 2013 Chinese Phys. C 37 123001

View the article online for updates and enhancements.
Measurement of the integrated luminosities of the data taken by BESIII at $\sqrt{s} = 3.650$ and 3.773 GeV*

M. Ablikim(Mu迪娜)1 M. N. Achasov8,9 M. Albayrak4 D. J. Ambrose41 F. F. An(安芬芬)1 Q. An(安琪)42 J. Z. Bai(白景芝)1 R. Baldini Ferroli19,4 Y. Ban(班勇)28 J. Becker4 J. V. Bennett18 M. Bertani19,4 J. M. Bian(边鸿鸣)40 E. Boger21,6 O. Bondarenko22 I. Boyko21 S. Braun77 R. A. Briere4 V. Bytteb11 H. Cai(蔡浩)46 X. Cai(蔡啸)1 O. Cakir46,9 A. Calcabrera19,4 G. F. Cao(曹国富)31 S. A. Cetin36,8 J. F. Chang(常铮)1 G. Chelkov21,6 G. Chen(陈刚)1 H. S. Chen(陈和生)1 J. C. Chen(陈江川)1 M. L. Chen(陈玛丽)1 S. J. Chen(陈申开)26 X. R. Chen(陈元柏)23 Y. B. Chen(陈元贵)26 H. P. Cheng(程和平)16 Y. P. Chu(初元萍)1 D. Cronin-Hennessy40 H. L. Dai(代洪亮)1 J. P. Dai(代建平)1 D. Dedovich21 Z. Y. Deng(邓子艳)1 A. Denig26 I. Denysenko21 M. Destefanis45,55 C. Q. Feng(房双世)1 L. Fava45,55,456 C. Q. Feng(房双世)42 P. Friedel1 C. D. Fu(傅成栋)1 J. L. Fu(傅金铭)26 O. Fuku21,6 Y. Gao(高延笑)35 C. Geng(耿聪)42 K. Goetzen9 W. X. Gong(龚文煊)1 W. Gradl20 M. Grecco45,456 M. H. Gu(顾煜皓)41 Y. T. Gu(顾运田)11 Y. H. Guan(管震)28 A. Q. Guo(郭爱强)27 L. B. Guo(郭立波)25 T. Guo(郭鹏)25 Y. P. Guo(郭玉萍)27 Y. L. Han(韩艳良)1 F. A. Harris39 K. L. He(何康林)1 M. He(何苗)1 Z. Y. He(何振亚)27 T. Held1 Y. K. Heng(衡月昆)1 Z. L. Hou(侯治龙)1 C. Hu(胡颃)25 M. Hu(胡建明)1 J. F. Hu(胡锋)37 T. Hu(胡涛)1 G. M. Huang(黄光明)5 G. S. Huang(黄光频)11 J. S. Huang(黄溶溶)31 L. Huang(黄浩)1 X. T. Huang(黄和生)30 Y. Huang(黄勇)26 T. Hussain44 C. S. Ji(姬长胜)42 Q. J. Ji(姬健全)1 Q. P. Ji(姬健全)27 X. B. Ji(李晓曦)1 X. L. Ji(李彼得)25 L. L. Jiang(姜丽丽)1 X. S. Jiang(江晓山)1 J. B. Jiao(焦健狄)30 Z. Jiao(焦铮)16 D. P. Jin(金大鹏)1 S. Jin(金山)1 F. F. Jing(景繁凡)35 N. Kalantar-Nayestanaki22 M. Katsavkuy26 B. Kopf3 M. Kornscher39 W. Kuehn37 W. Lai(赖蔚)1 J. S. Lange37 M. Lara18 P. Larin13 M. Leyhe5 C. H. Li(李春花)1 Cheng Li(李澄)42 Cui Li(李翠)42 D. M. Li(李德民)48 F. Li(李飞)1 G. Li(李刚)1 H. B. Li(李海波)1 J. C. Li(李家才)1 K. Li(李康)12 Lei Li(李蕾)1 P. R. Li(李培焕)38 Q. J. Li(李秋菊)1 W. D. Li(李卫东)1 W. G. Li(李卫国)1 X. L. Li(李晓玲)30 X. N. Li(李小男)1 X. Q. Li(李学涛)37 X. R. Li(李秀荣)29 Z. B. Li(李志兵)44 H. Liang(梁昊)42 Y. F. Liang(梁勇)43 Y. T. Liang(梁跃)47 G. R. Liao(廖广瑞)35 D. X. Lin(林滨)13 B. J. Liu(刘北江)1 C. L. Liu(刘建成)1 C. X. Liu(刘春秀)1 F. H. Liu(刘福利)43 Fang Liu(刘芳)1 Feng Liu(刘峰)5 H. B. Liu(刘宏滨)11 H. H. Liu(刘汇慧)15 H. M. Liu(刘怀民)1 J. P. Liu(刘凯)46 K. Liu(刘凯)35 K. Y. Liu(刘蔚)24 P. L. Liu(刘佩兰)30 Q. Liu(刘庆)38 S. B. Liu(刘樹彬)42 X. Liu(刘翔)33 Y. B. Liu(刘玉海)1 Z. A. Liu(刘振亚)1 Zhiqiang Liu(刘志强)1 Zhiqiang Liu(刘智義)1 H. L. Lohner22 X. C. Lou(娄庆华)1 C. R. Lu(鲁公穆)14 H. J. Lu(吕江海)16 J. G. Lu(吕晓冬)48 X. R. Lu(吕晓雷)38 Y. P. Lu(卢云鹏)1 C. L. Luo(罗成林)25 M. X. Luo(罗民权)37 T. Luo39 X. L. Luo(罗小兰)3 M. Lv(吕蒙)1 F. C. Ma(马风霞)44 H. L. Ma(马海龙)1 Q. M. Ma(马秋梅)1 S. Ma(马斯)1 T. Ma(马天)1 X. Y. Ma(马晓燕)1 F. E. Maas13 M. Maggiora45,55 C. Q. Feng(冯双世)1 L. M. Hanaberg5 Q. A. Malik44 J. Y. Mao(毛振亚)28 Z. P. Mao(毛振亚)1 J. G. Messchendorp22 J. Min(敏健)1

Received 9 July 2013, Revised 26 August 2013

*Supported by the Ministry of Science and Technology of China (2009CB825024), National Natural Science Foundation of China (10625524, 10821063, 10825524, 10835001, 10935007, 11125525, 11235011), Joint Funds of the National Natural Science Foundation of China (11079008, 11179007), Chinese Academy of Sciences Large-Scale Scientific Facility Program, CAS (KJCX2-YW-N92, KJCX2-YW-N45), 100 Talents Program of CAS, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R33-2008-000-10155-0)

1 Introduction

In e^+e^- collider experiments, the number of events for $e^+e^-\to X$ observed in a data set can be written as

$$N^{obs}_{e^+e^-\to X}(\sqrt{s}) = L(\sqrt{s}) \times \epsilon_{e^+e^-\to X}(\sqrt{s}) \times \sigma^{obs}(\sqrt{s}),$$

(1)

where X denotes some final state produced in e^+e^- annihilation, $N^{obs}_{e^+e^-\to X}$ is the number of events observed, $\epsilon_{e^+e^-\to X}$ is the detection efficiency for $e^+e^-\to X$, L is the integrated luminosity and $\sigma^{obs}(\sqrt{s})$ is the observed production cross section for the process $e^+e^-\to X$ at center-of-mass energy \sqrt{s}.

To systematically study the properties of the production and decays of $\psi(3770)$ and D mesons, a data set was taken at $\sqrt{s}=3.773$ GeV, with the BESIII detector at the BEPCII collider, from January 2010 to May 2011. So far, this data set is the world’s largest e^+e^- collision data set taken around the $\psi(3770)$ resonance peak. In order to estimate the continuum contribution in studies of the resonance decays, another data set was taken in 2009 at $\sqrt{s}=3.650$ GeV, which is far away from the resonance peak. The data taken at $\sqrt{s}=3.773$ GeV was accumulated in different periods of BESIII running; the first part was taken from January 2010 to June 2010 and the
second part was taken from December 2010 to May 2011. For convenience in the following, we call the data taken at $\sqrt{s}=3.650$ GeV the continuum data, and call the two parts of the data taken at $\sqrt{s}=3.773$ GeV $\Psi(3770)$ data A and $\Psi(3770)$ data B, respectively.

In this paper, we present the measurements of the integrated luminosities of the data sets taken at $\sqrt{s}=3.650$ and 3.773 GeV by analyzing the large angle Bhabha scattering events.

2 BESIII detector

The BESIII detector and the BEPC II collider [1] are major upgrades of the BES II detector and the BEPC collider [2]. The designed peak luminosity of the doubling e^+e^- collider, BEPC II, is 10^{33} cm$^{-2}$s$^{-1}$ at a beam current of 0.93 A. The peak luminosity at $\sqrt{s}=3.773$ GeV reached 0.65×10^{33} cm$^{-2}$s$^{-1}$ in April 2011 during the $\Psi(3770)$ data taking. The BESIII detector, which has a geometrical acceptance of 93% of 4π, consists of the following main components: 1) a small-celled, helium-based main drift chamber (MDC) with 43 layers. The average single wire resolution is 135 μm, and the momentum resolution for 1 GeV/c charged particles in a 1 T magnetic field is 0.5%; 2) an electromagnetic calorimeter (EMC) made of 6240 CsI(Tl) crystals arranged in a cylindrical shape (barrel) plus two endcaps. For 1.0 GeV photons, the energy resolution is 2.5% in the barrel and 5% in the endcaps, and the position resolution is 6 mm in the barrel and 9 mm in the endcaps; 3) a Time-Of-Flight system (TOF) for particle identification composed of a barrel and two endcaps. The barrel part is made of two layers, each layer consisting of 88 pieces of 5 cm thick, 2.4 m long plastic scintillator. Each endcap consists of 96 fan-shaped, 5 cm thick, plastic scintillators. The time resolution is 80 ps in the barrel, and 110 ps in the endcaps, corresponding to a $2\sigma R/\pi$ separation for momenta up to about 1.0 GeV/c; 4) a muon chamber system (MUC) made of 1600 m2 of Resistive Plate Chambers (RPC) arranged in 9 layers in the barrel and 8 layers in the endcaps and incorporated in the return yoke of the superconducting magnet. The position resolution is about 2 cm.

3 Method

In principle, any QED process can be used to measure the integrated luminosity of the data set using

$$L(\sqrt{s}) = \frac{N_{\text{obs}}^{\text{QED}}(\sqrt{s}) \times (1 - \eta)}{\sigma_{\text{QED}}(\sqrt{s}) \times \epsilon \times \epsilon_{\text{trg}}^{e+e^-}}, \quad (2)$$

where $N_{\text{obs}}^{\text{QED}}$ is the observed number of events of the final state in question, σ_{QED} is the production cross section, which can be determined by theoretical calculation, ϵ is the detection efficiency, η is the contamination ratio and $\epsilon_{\text{trg}}^{e+e^-}$ is the trigger efficiency for collecting the QED process in the on-line data acquisition.

Usually, the processes $e^+e^-\rightarrow (\gamma)e^+e^-$, $e^+e^-\rightarrow (\gamma)\gamma\gamma$ and $e^+e^-\rightarrow (\gamma)\mu^+\mu^-$ are used to measure the integrated luminosity of the data because of their simpler final state topologies, larger production cross sections, higher detection efficiencies, as well as more precise expected cross sections available from theory. In this work, the large angle Bhabha scattering events of $e^+e^-\rightarrow (\gamma)e^+e^-$ are adopted. Throughout the paper, the symbol of “(γ)” denotes the possible photon (s) produced due to Initial State Radiation or Final State Radiation.

4 Luminosity measurement

4.1 Event selection

In order to select candidate Bhabha events, it is required that there should be only two good charged tracks, with total charge zero, which are reconstructed in the MDC. Each track must originate from the interaction point in the xyz-plane and in the z direction, respectively. Furthermore, to ensure that the candidate charged track hits the barrel of the EMC, we require that the polar angle θ of the charged track satisfies $|\cos \theta| < 0.80$.

Figure 1 shows the energy deposited in the EMC (E_{EMC}) for the good charged tracks of events satisfying the above selection criteria, where the dots with red error bars are the continuum data, the yellow histogram is $e^+e^-\rightarrow (\gamma)e^+e^-$ Monte Carlo events and the light green histogram is $e^+e^-\rightarrow (\gamma)\mu^+\mu^-$ Monte Carlo events. From the figure it can be seen that the requirement

$$E_{\text{EMC}}/\text{GeV}$$

Fig. 1. The distributions of the energy deposited in the EMC from the charged tracks associated with the selected events. The dots with red error bars are the continuum data, the yellow histogram is $e^+e^-\rightarrow (\gamma)e^+e^-$ Monte Carlo events and the light green histogram is $e^+e^-\rightarrow (\gamma)\mu^+\mu^-$ Monte Carlo events.
$E_{\text{EMC}} > 1.0$ GeV can cleanly separate the $e^+e^- \rightarrow (\gamma)\mu^+\mu^-$ events from the Bhabha scattering events. To further remove background from cosmic rays, the momentum of at least one of the two charged tracks in the candidate Bhabha events should be less than $E_b + 0.15$ GeV, where E_b is the calibrated beam energy.

After applying the above selection criteria, the accepted events are mostly Bhabha scattering events. But there may still be a small amount of background from $e^+e^- \rightarrow (\gamma)J/\psi$, $e^+e^- \rightarrow (\gamma)\psi(3686)$ and $e^+e^- \rightarrow \psi(3770) \rightarrow (\gamma)J/\psi X$ and $e^+e^- \rightarrow \psi(3770)$. In order to remove these background events, the sum of the momenta of the two good charged tracks is required to be greater than $0.9 \times E_{\text{cm}}$. The remaining contamination from these background sources is estimated by Monte Carlo simulation, which will be discussed in Section 4.3.

4.2 Data analysis

The two oppositely charged tracks in the candidate Bhabha scattering events are bent in the magnetic field, so the positions of their two shower clusters in the xy-plane of the EMC are not back-to-back. To determine the observed number of Bhabha scattering events, we use the difference of the azimuthal angles of the two clusters in the EMC, which is defined as $\delta \phi = |\phi_1 - \phi_2| - 180^\circ$ in degrees, where ϕ_1 and ϕ_2 are the azimuthal angles of the two clusters in the EMC. Fig. 2 shows the $\delta \phi$ distribution of the candidate Bhabha scattering events selected from the continuum data.

![Image of Fig. 2](image-url)

Fig. 2. The distribution of $\delta \phi$ ($\delta \phi = |\phi_1 - \phi_2| - 180^\circ$) for the selected e^+ and e^- tracks. The main part and the inset are shown with linear and logarithmic scale, respectively.

In the figure, the events in the “signal” regions between the red arrows are taken as the signal events, while the ones in the “sideband” regions between the blue arrows are used to estimate the background in the $\delta \phi$ “signal” region. After subtracting the scaled number of the events in the sideband region from the number of events in the signal region, we obtain the numbers of the Bhabha scattering events observed from data, which are listed in the second row of Table 1.

4.3 Background estimation

For the accepted Bhabha scattering events, there may still be some residual background from $e^+e^- \rightarrow (\gamma)J/\psi$, $e^+e^- \rightarrow (\gamma)\psi(3686)$ and $e^+e^- \rightarrow \psi(3770) \rightarrow (\gamma)J/\psi X$ and $e^+e^- \rightarrow \psi(3770)$, as well as some hadronic processes. These are estimated by analyzing the Monte Carlo events, including $16.5 \times e^+e^- \rightarrow (\gamma)J/\psi$, $51 M e^+e^- \rightarrow (\gamma)\psi(3686)$, $198 M e^+e^- \rightarrow \psi(3770) \rightarrow J/\psi X$, $15 M e^+e^- \rightarrow \psi(3770) \rightarrow non-\psi$, and $183 M e^+e^- \rightarrow continuum$ light hadron events. Detailed analysis gives the contamination rates to be $\eta = 1.7 \times 10^{-5}$ and 1.7×10^{-4} for the candidate Bhabha scattering events selected from the continuum data and the $\psi(3770)$ data, respectively.

4.4 Detection efficiency for $e^+e^- \rightarrow (\gamma)e^+e^-$

To determine the detection efficiencies for the Bhabha scattering events, we generated $400000 e^+e^- \rightarrow (\gamma)e^+e^-$ Monte Carlo events with the Babayaga generator [3], within the polar angle range of $|\cos \theta| < 0.83$ at $\sqrt{s} = 3.650$ and 3.773 GeV, where θ is the polar angle for the e^+ and e^-. By analyzing these Monte Carlo events with the same selection criteria as the data analysis, we obtained the detection efficiencies for $e^+e^- \rightarrow (\gamma)e^+e^-$ at $\sqrt{s} = 3.650$ and 3.773 GeV, which are summarized in the fourth row of Table 1.

4.5 Integrated luminosities

Inserting the numbers of observed Bhabha scattering events, the detection efficiencies for $e^+e^- \rightarrow (\gamma)e^+e^-$ obtained by the Monte Carlo simulation, the trigger efficiency and the visible cross sections within the polar angle range of $|\cos \theta| < 0.83$ in Eq. (2), we determine the integrated luminosities of the continuum data, the $\psi(3770)$ data A and the $\psi(3770)$ data B to be $(44.49 \pm 0.21 \pm 0.44)$ pb$^{-1}$, $(927.67 \pm 0.10 \pm 0.28)$ pb$^{-1}$ and $(1989.27 \pm 0.15 \pm 19.89)$ pb$^{-1}$, respectively. Here, the first errors are statistical and the second are systematic and discussed in the next section. The total luminosity of the $\psi(3770)$ data is $(2916.94 \pm 0.18 \pm 0.29) \: \text{pb}^{-1}$. Here, systematic uncertainties are completely correlated between the two parts of the data, and thus are added linearly when they are combined. Here, for the data sets used in the analysis, the trigger efficiency for collecting $e^+e^- \rightarrow (\gamma)e^+e^-$ events was determined to be $\epsilon_{\text{trigger}} = 100\%$ with the statistical error being less than 0.1% [4]. The numbers used in the luminosity measurements are summarized in Table 1.
luminosities with the selection requirements of $\psi(3770)$ data and continuum data and of $|\theta|<0.75$ and 0.70. The differences from the standard selection, the trigger efficiency and the generator.

In order to estimate the systematic uncertainty due to the $\cos \theta$ requirement, we also determine the integrated luminosities with the selection requirements of $|\cos \theta| < 0.75$ and 0.70. The differences from the standard selection of $|\cos \theta| < 0.80$ are all less than 0.5% for both the continuum data and $\psi(3770)$ data. To be conservative, we take 0.75% as the systematic error due to the $\cos \theta$ selection in this work. The systematic uncertainty due to the MDC measurement information, which includes the uncertainties due to the MDC tracking efficiency and the momentum requirement, is determined to be 0.3% by comparing the integrated luminosities measured with and without the MDC measurement information. The systematic uncertainty due to the E_{EMC} energy selection requirements is determined to be 0.2%, by comparing the E_{EMC} distributions of the data and Monte Carlo events. The uncertainty from the EMC cluster reconstruction is determined to be 0.03% by comparing the efficiencies of the data and the Monte Carlo events.

The uncertainty from the Monte Carlo statistics is 0.1%. The uncertainty in the background subtraction is negligible. The uncertainty due to the $\delta \phi$ signal region selection is estimated to be 0.01% by comparing the integrated luminosities measured with different signal regions. In these measurements, we use the trigger efficiency for collecting $e^+e^-\rightarrow(\gamma)e^+e^-$ events of $e^{\text{trig}}_{\epsilon} = 100\%$ with the statistical error being less than 0.1% [4]. Therefore, we take 0.1% as the systematic uncertainty due to trigger efficiency. The uncertainty due to the Bhabha generator is 0.5%, which is cited from Ref. [3].

Table 2 summarizes the above systematic uncertainties in the luminosity measurement. The total systematic error is determined to be 1.0% by adding these uncertainties in quadrature.

5 Summary

By analyzing the Bhabha scattering events, we measure the integrated luminosities of the data taken with the BESIII detector at $\sqrt{s} = 3.650$ and 3.773 GeV to be $(4.49\pm0.02\pm0.44)$ pb$^{-1}$ and $(2916.94\pm0.18\pm29.17)$ pb$^{-1}$, respectively. These luminosities can be used for normalization in studies of $\psi(3770)$ production and decays, as well as in studies of D meson production and decays.

The BESIII collaboration thanks the staff of BEPCII and the computing center for their strong support.

References