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Abstract. Fourth grade students’ understanding of rectangular solids made of small cubes was 
investigated. A three-phase procedure was utilized. First, interviews were conducted individually to 
assess the students’ level of functioning in cube-enumeration tasks. Second, participants were 
engaged in equal sharing of spatial constructions. Last, postinterviews were conducted to probe 
students’ improvements as revealed by their use of enumeration strategies. Students used three 
distinct conceptualizations for the arrays of cubes depending on what they formed as unit and how 
they structured the whole building. Initially, their structuring was distracted by the complexity of 
buildings and none of them used the same strategies consistently across problems. During the 
instruction, they exhibited the same conceptualizations and transitioned from one to the other. After 
the intervention, all the students consistently used layering strategies regardless of the complexity of 
the buildings. Equal-sharing situations coupled with coloring activities paved the road in establishing 
units, composite units, and unit iteration.  

Introduction 

Meaningful mathematical learning occurs when the learner understands the reason behind 
the procedures. For example, children should come to understand the logical operation (i.e., 
organization of units) of finding the volume before they are introduced to the numerical 
calculation or formula (Piaget, Inhelder, & Szeminska, 1970). Gradually, they substitute 
numerical operations for logical operations. In this sense, finding the number of cubes in 
rectangular solids provides the cognitive framework for understanding the measurement of 
volume and the formula for determining the volume (Battista & Clements, 1998). However, 
children have difficulty finding the number of cubes in rectangular solids even in high school 
and beyond (Battista & Clements, 1996; Ben-Chaim, Lappan, & Houang, 1985).  In order to 
overcome these difficulties, children need ample experiences with appropriate instructional 
materials that engage them in mathematical discovery.  

For any mathematical concept, students pass through various levels of understanding.  As 
mathematics education researchers, we need to clarify what these levels are and how they 
are attained by the students as well as what we can do to help them gain a deeper 
understanding of the concept. Previously, researchers have described the cognitive 
constructions students make as they enumerate 3-D arrays of cubes (Battista & Clements, 
1996). The present study aims at extending previous research about students' understanding 
of rectangular solids made of small cubes and attempts to extend the research base by 
utilizing different problem situations, such as equal sharing of spatial constructions, to 
explore students’ thinking.  

There were two main reasons why the equal sharing context was used. First, it is a 
semantically rich context (Empson, 1995) that could initiate students' intuition and prior 
knowledge about sharing things.  While solving problems using their intuition and prior 
knowledge, children discover new ways of looking at things, thus leading to the development 
of that knowledge into more sophisticated ones.  For example, layer structure is not inherent 
in 3-D arrays of cubes (Cobb, Yackel, & Wood, 1992).  Children gradually and individually 
construct the layer structure while they are solving problems and acting on similar objects 
involving layers.  Second, equal sharing provides a socially desirable context in which 
students want to be fair in their partitioning of the buildings. This might lead them to abstract 
the equality of the spatial structural elements of the buildings such as layers, columns, and 
rows as iterable units.  
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Another component of the present study was the utilization of social interaction between 
peers and the teacher. Through interaction with peers and adults students appropriate their 
knowledge and come to a common understanding of the problem situation, which is 
necessary for communicating mathematically. Additionally, asking questions that constrain 
students to direct their attention to certain aspects of the problem might be a good strategy 
for stimulating learning (Anderson, Reder, & Simon, 1995). 

Methods 

Participants  

Four fourth graders, two girls and two boys from a charter school in a poor socioeconomic 
area in the southwest of America , participated in the study.  According to their classroom 
teacher, they were all average or slightly below average students in their mathematics 
classes.  The students participated in the study on a voluntary basis.  They said they had not 
previously seen the same materials used in the study.   

Materials  

Four types of materials were used: colored pens, wooden cubes (two centimeters along each 
edge), rectangular buildings made by gluing individual wooden cubes together (the same 
sizes as the loose cubes), and drawings of the concrete buildings.   

Pre- and postinterview tasks consisted of four buildings composed of 4, 8, 16, and 36 cubes, 
and their parallel-perspective drawings.  In all of the pre and postinterview tasks, students 
were asked to find the number of small (unit) cubes in the buildings. Colored pens were used 
by the participants to show the different shares by shading parts of the buildings in drawings 
during the intervention period. The loose wooden cubes were used for constructing the 
buildings.  Seven rectangular buildings composed of a varying number of cubes, that is, 8, 9, 
12, 16, 24, 36, and 48 cubes were used as a supplement to the pictorial representations.  
Drawings of these buildings were used by the participants for shading in different shares and 
comparing with the concrete buildings. 

Procedures 

A three-phase procedure was applied for collecting the data. In the first phase, the interviews 
were intended to determine the levels of students’ thinking in cube enumeration tasks.  
Participants were asked to find the number of cubes in rectangular buildings using first, 
graphical and then, concrete representations of rectangular buildings made of small cubes. 
They were asked to solve the problems with concrete cubes after they finished all the 
problems with pictorial representations. In volume-related tasks, although the differences 
between the modes were not statistically significant, the third and fifth graders' overall scores 
in problems with concrete representations were slightly better than with the graphical 
representations (Battista & Clements, 1996; 1998; Phillips, 1972). Therefore, during the 
study, both modes of presentations were used to detect if there were any variations in 
students’ functioning.   

Through interviews, the strategies used by the students while solving the cube enumeration 
tasks were obtained in a variety of situations in order to elicit multiple levels of sophistication 
in solution strategies. Situations included the questions with one-layer, small, medium, and 
large buildings in both concrete and pictorial representations. The preinterview data were 
thoroughly examined and partly analyzed before the intervention in order to provide further 
insight into the instructional intervention phase.   
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The second phase, intervention, consisted of problems that invited students to share equally 
the rectangular buildings made of small cubes.  Students spent two sessions, approximately 
45 minutes each, in this phase. They worked in pairs but the shares varied with respect to 
the number of columns or layers in buildings. For example, students were asked to share a 3 
by 3 by 4 building into either 3 or 4 shares so that they did not have any leftovers after 
sharing.  The purpose of the intervention was twofold:   

• One was to see if the students used the same types of conceptualizations as they 
used while enumerating the cubes in the buildings.     

• The other was to see if the students made any improvements in their approaches to 
the problems during the solutions of sharing activities.     

Postinterviews were conducted with each participant six days after the last session of his or 
her intervention. The reason for these interviews was to probe if any improvement in strategy 
use was made due to the instructional intervention. The procedural format for the 
postinterviews was exactly the same as the preinterviews. This phase lasted shorter (three to 
four minutes for each student because of the mastery) compared to preinterviews (9-11 
minutes).   

Each phase was videotaped to account for all the actions and verbalizations of the 
participants while they were attempting to solve the problems with cubes in rectangular 
buildings both in pictorial and in concrete situations. Retrospective reports (Ericcson & 
Simon, 1993) were additionally used if the strategy could not be determined through 
observation by the interviewer.  Then the videotapes were transcribed into verbal and 
graphical (participants' step-by-step coloring and partitioning of the buildings) data in a 
computer environment. Data were analyzed in an attempt to make sense of the students’ 
structuring of rectangular arrays and the development of this understanding under the 
circumstances. 

Results and Discussion 

A qualitative interpretive (Ericksson, 1986) framework was used in the analysis of the data.  
After multiple readings and examinations of the data generated during the study three main 
assertions were stated based on the emerging patterns in the data.  These assertions were 
warranted by bringing empirical evidences from the data.  Alternative interpretations were 
also discussed for each assertion.  

Assertion 1.  Participants used different strategies depending on the  
complexity of the building at hand.  

All of the students interviewed enumerated correctly the cubes in Question 1 in both 
graphical (a 2 x 2 x 1 building) and concrete (a 3 x 3 x1 building) situations. This means that 
they comprehended both concrete and pictorial representations of one-layer buildings. Since 
Question 1 (concrete and graphical) had all the cubes visible, there was no ambiguity 
created on the part of participants. That was why it was eliminated from further analysis; 
however this knowledge and the level of functioning seemed to be prerequisite for further 
understanding of rectangular solids made of small cubes. 
  

As shown in Table 1, all the strategies used by the participants for enumerating rectangular 
buildings made of small cubes fell into categories made by Battista and Clements (1996).  
(See Appendix A for a detailed description of student strategies). Not one student used 
Category D or Category E strategies where the student used the formula rotely or misapplied 
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it. This was because the participants of the present study had not yet been introduced to the 
volume formula.   
 

Table 1. Participants' Strategies While Enumerating Cubes in Arrays  

Student Test  

Concrete   

  

Graphical  

2  3  4   

  

2  3  4  

CH  Pre  A2  A2  B2   

  

B2  B2  B2  

SA  Pre  A2  A2  C3   

  

A2  B1  C3  

ST  Pre  A3  B3  C3   

  

A2  C1  C1  

DA  Pre  A2  A3  A3   

  

C1  C1  C1  

Note.   For the explanation of each strategy, see Appendix A.  

The number of unit cubes in the building or the size of the building in three dimensions 

affected the students' strategy choices. All but one student used Category A strategies for 

Question 2 (a 2 x 2 x 2 building) in both concrete and pictorial situations in the preinterview 

(see Table 1). For the fourth question (a 4 x 3 x 3 building), however, two students used 

Category C strategies, one A, and one B strategy in concrete situations. This difference was 

even greater in the graphical situation. All but one student used C strategies for Question 4 

(pictorial). One student used a B strategy for the same question. 

It seemed that when the size of the building increased the task became more complex or 

overwhelming for the students. If they did not have a consistent strategy, then they used less 

viable strategies, such as C strategies, in order to find a solution to the problem at hand.  

Participants also used different strategies for concrete and pictorial situations although the 

same-size buildings were used in both of the situations. Students chose Category A 

strategies more often (8 times in 12) in concrete situations than they did (4 times in 12) in 

graphical situations. Alternately, they used Category C strategies more often (6 times in 12) 

in graphical situations than they did (2 times in 12) in concrete situations. This difference was 

even greater for some students, such as DA and ST, than it was for the other two students.  

DA did not make a single mistake nor show any hesitation in determining the number of 

cubes in one-layer buildings, both concrete and pictorial. He was able to do correctly all the 

problems presented concretely using Category A strategies; however, he used C1 strategy 

and did not obtain any correct from the pictorially presented problems. It seemed that he 

almost completely lacked understanding of three-dimensionality in graphical representations.  

While finding the number of cubes in pictorial buildings, he consistently counted only the 

visible cube faces, a typical C1 strategy. 
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The effect of the size of the building and the effect of pictorial condition were also evident 

during the intervention. Each time the size of the building was increased, some students, 

such as DA and ST, seemed overwhelmed, and thus the researcher/teacher had to return to 

a simpler situation. In addition, students solved the problems with concrete materials more 

easily than the problems with graphical representations. Therefore, most of the time while 

working on pictorial representations, the researcher/teacher had to go back to concrete 

materials, had the students solve the problems and then compare the construction with the 

pictorial representation. At the very beginning of the intervention, it took the students some 

time to work with pictorial representations at the same level of ease with which they worked 

with concrete materials.  

This difficulty can be explained by the fact that pictorial situations were perceptually more 

difficult than concrete situations (Orton & Frobisher, 1996; Cohen, 1972). Additionally, 

students, at least those participating in this study, were relatively more familiar with concrete 

materials than they were with pictorial representations of cube buildings. Similar results were 

reported in the literature (e.g., Battista & Clements, 1996; Ben-Chaim et al., 1985). However, 

even the experience they had during the intervention was significant in students' acquisition 

of the skill to accurately interpret two-dimensional graphical representations of certain three-

dimensional objects.   

Assertion 2. During the instruction, participants progressed through the three different 

conceptualizations of rectangular solids composed of small cubes.  

The three conceptualizations are labeled as C, B, and A type for the ease of depiction (see 

Table 2). Students with a "C" type conceptualization acted on buildings based on faces. They 

took individual cube faces as unit and overall structuring was based on the building's faces. 

They did not consider the drawing as three-dimensional and did not take the interior cubes 

into consideration in the concrete building. Students with "B" conceptualization were aware of 

the three-dimensionality and space-filling properties of the cubes and the whole building. 

They used cubes as units but their overall structuring was local, not yet global. For them, the 

building is a “bunch of cubes.”  They usually counted the cubes one by one and 

unsystematically. It was the "A" conceptualization that enabled students to utilize composite 

or units of units and unit iteration. For them, the cube building was organized into regular 

patterns. 

Table 2. Students' Conceptualizations of Rectangular Arrays of Cubes  

Type  Conceptualization Units formed out of Overall 

structuring  

C  Cubes as faces  Cube faces  Based on 
building faces  

B  Bunch of cubes  Individual cubes  Local  

A  Organized cubes  Cubes, columns,     

    layers  

Global  

All participants comprehended a one-layer building both in concrete and in pictorial form 

before the instruction; however, some of them could not mark a layer (i.e., one of the two 

shares) on the drawing of a two-layer small building. For example, DA and ST were not able 
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to see the equal pieces in the drawings. Instead, they tried to color an equal number of cube 

faces because their conceptualization of the drawing of rectangular solids was merely a 

"medley of views" for multilayer buildings. In other words, their initial partitioning was based 

on two-dimensional faces rather than on three-dimensional spaces.  

DA's development through the three types of conceptualizations is depicted in Figure 1. As 

stated earlier, he completely lacked an understanding of pictorial representations with the 

exception of one-layered buildings. He first viewed the buildings as consisting of faces –C 

conceptualization (see Figure 1, view I). Then he vacillated between C and B 

conceptualization (see Figure 1, view II).  His actions while he was coloring the four equal 

shares were numbered in Figure 1, view II to depict his effort to establish three-dimensional 

composite units in the picture of a multilayer building.  He first colored the front and upper 

faces of upper-front row (labeled 1) as one of the four shares.  He then colored the front face 

of the lower-front row (labeled 2) as a second share.  After coloring the right side of the lower 

layer (labeled 3), he recognized that the face (labeled 4) belonged to the lower-front row. At 

his fifth attempt, DA realized that the face (labeled 5) was part of upper-front row.  He finally 

colored the remaining row (labeled 6) without any hesitation.   

As seen in Figure 1, view III, he established three-dimensionality in a pictorial representation 

but could not go beyond local structuring. Although it looks like a layer-type structuring, it is 

not, because it is supposed to be partitioned into four equal pieces instead of three equal 

pieces. Finally, towards the end of instruction he reached an "A" conceptualization even with 

a large building as seen in Figure 1, view IV.  

 

Figure 1.   DA's development through the three types of conceptualizations 

 

Another student, SA, went through similar stages. During the pre interviews, although she 

used A2 strategies for enumerating the small buildings, she returned to the C3 strategy for 

the large building. At the initial stages of the intervention she was not flexible enough to 

partition the buildings, even the small ones, into a different number of shares. Therefore, she 

approached the task as "a set of cubes in terms of its faces" (see Figure 2, view I). With 

encouragement from the interviewer, she established units in the picture based on three 
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dimensions and started to use "local structuring" (see Figure 2, view II). From the small 

buildings, it was not possible to determine whether her overall structuring was global or local. 

Both could be possible. However, when the size of the building increased it became obvious 

that her overall structuring was still local (see Figure 2, views II and III).  

 

 

Figure 2.    SA's development from C to B conceptualization for the small  

                  and medium buildings  

 

There was another reason why she used local structuring. She was relying more on a 

numerical strategy and she was not able to attend to the spatial properties of the whole 

building.  She initially in her mind found the total number of cubes in the building and then 

divided it by the number of sharers. She then colored that number of cubes. If she obtained 

the total number correctly, her partitioning was accurate. However, her developing B 

conceptualization was so fragile that she returned to C conceptualization because of the 

increasing size of the building (see Figure 3, view I). After awhile, with the help of concrete 

materials she established the B conceptualization for the large building. However, her 

partitioning was still not regular (i.e., not based on layers; see Figure 3, view II). Her final 

strategies towards the end of the instruction were clearly a layering type (see Figure 3, view 

III). Her actions with the problems that encouraged equal partitioning of the cube buildings 

helped her to construct the regular spatial patterns in the buildings. SA's three-step progress 

represented with her drawing tasks is depicted in Figure 3. 

 

 

Figure 3.   SA's development through the three types of conceptualizations 
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It can be observed from her colorings (see Figure 3) that, again, for the large building SA 

started with a C conceptualization.  Then she managed to move to the B conceptualization.  

With some guidance from the interviewer and using concrete materials, she was able to use 

the "A" type conceptualization by systematically and simultaneously acting on both concrete 

and pictorial representations of the cube arrays. However, even the partitioning of concrete 

buildings was not easy for the participants at the beginning.  They were usually able to 

construct the equal shares on small concrete buildings.  However they were not able right 

away to do the same with the drawings and the large buildings.  These findings further show 

that drawings of large buildings are especially hard for children to represent mentally. 

Assertion 3.  Equal sharing problems paved the road toward more viable strategies.  

The strategies students used in the post interview are depicted in Table 3. All of the 

participants used Type A strategies after the equal sharing activities.  

Table 3. Participants' Strategies While Enumerating Arrays of Cubes in the Posttest  

Student  Test  

Concrete  Graphical  

2  3  4  2  3  4  

CH  Post  A2  A2  A2  A1  A2  A2  

SA  Post  A2  A2  A2  A2  A2  A2  

ST  Post  A2  A2  A2  A2  A2  A2  

DA  Post  A2  A2  A2  A2  A2  A2  

Note.   For the explanation of each strategy, see Appendix A.  

Such student actions as building rectangular prisms with cubes, the consistent checking of 

the equality between concrete blocks and their drawings, making equal shares out of prisms, 

and coloring those shares on pictures brought them to a point where they were able to 

abstract the equality of some structural elements of the rectangular-cube buildings such as 

unit cubes, rows, columns, and layers.  Gradually, they managed to apply layering strategies 

to both large size and pictorial buildings.  

It is also very possible that the students' specific actions such as coloring the pictures 

according to concrete blocks, checking for their equality, and iterating equal shares along the 

third dimension might have helped them to coordinate and integrate different views of unit 

cubes, composites, and the whole building. By coloring the pictures, students tried to 

determine the boundaries of unit cubes, columns, and layers while finding equal shares in 

buildings.  

Summary and Conclusions    

The results of the present study can be summarized under two subheadings: three different 

conceptualizations and task complexity.  In the first, how students acted on buildings is 

elaborated. In the second, why students behaved that way is highlighted.  

Three different conceptualizations  
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The participants in this study exhibited and progressed through three different 

conceptualizations of rectangular solids made of small cubes.  This finding is consistent with 

the spatial structuring theory (Battista & Clements, 1996).  Additionally, in each level of 

conceptualization there were two related processes to be accomplished.  One was the 

formation of units. What the students formed as a unit was inferred from what the students 

were counting while enumerating the cubes in buildings. They may have counted cube faces, 

individual cubes, and some composites of cubes. 

The other was the overall structuring or organization of these units in the whole building. How 

the students structured the building was inferred from how they were enumerating the units. 

The possibilities were counting units with reference to building faces, counting unit cubes in 

local groups, and counting in regular patterns such as layers.  

In the first level, students viewed the buildings as "cubes as faces." Since a typical student at 

this level could attend to only one face at a time (Battista & Clements, 1996) (i.e., no 

coordination of views) they took the cube faces as units to be counted and organized them (if 

any) in terms of building faces. They did not bother with invisible cubes or even faces.  

Second, they conceptualized the array as a "bunch of cubes." That means that they are 

aware of the space-filling and three-dimensionality properties of unit cubes and the building 

itself but there is no organization of them. Their structuring was based on unit cubes but it 

was local, not yet global. As a result they tried to count all the cubes inside and out but they 

could not see any organization of the cubes in the building. It can be said that they 

coordinated and integrated the different views of a unit cube but not yet the whole building.  

They first tried to color cubes one by one. They then realized the pattern. At the beginning 

however, their coloring of equal shares did not correspond to any regular pattern, such as 

columns and layers of the building. Therefore, their overall structuring was considered local.  

Third, students conceptualized the set of cubes as "organized cubes." Students at this level 

started to properly iterate units based on spatial structural elements of the buildings. They 

could flexibly view the buildings and form regular patterns such as columns and layers in the 

building. The global structuring of the whole building was achieved. At the end, skip counting, 

additive, and multiplicative iterations were successively inserted into their enumeration 

strategies.  

The use of composites depends on the level at which the student performed the coordination 

and integration operations. While counting, for example, a student may use composites 

based on two dimensions if he or she did not yet perform any kind of coordination and 

integration of different views of unit cube and the whole building. Or he or she may use three-

dimensional composites if he or she organized, at least partly, the whole building.  Thus, a 

student counting the cubes one by one can be said to be performing coordination and 

integration operations for individual cubes in a complex building. A student counting the 

cubes in local groups is additionally trying to coordinate views of the whole building.  Finally, 

a student who use unit or composite unit iterations consistently can be said to be performing 

the integration operation for the whole building.  The proper use of units, composites, and 

their iterations goes hand in hand with coordination and integration of different views of both 

unit cubes and then the whole building.  

In sum, the difference between the first and the second level conceptualization is the 

utilization of three-dimensionality or forming proper units based on three dimensions of 

individual cubes in multilayer buildings.  The difference between the second and the third 
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conceptualization is the organization of the structural elements of buildings in a systematic 

way or forming units of units or composite units based on three-dimensional elements and 

then unit iteration.  

Why is it that the same students used different conceptualizations for different tasks? The 

main reason for this appears to be the complexity of the buildings such as concrete versus 

pictorial and small versus large buildings.  This will be discussed in the following section.  

Task complexity    

In preinterviews and instructional periods, students were not consistent in their use of 

strategies from which their conceptualizations were inferred due to "the task complexity" 

(Middleton & Corbett, 1998, p. 263). The strategies they used in dealing with cube buildings 

were distracted by both the increasing size of the buildings and pictorial situations.   

It was relatively easier for students to visualize a small building (i.e., a building containing a 

fewer number of cubes) than a large building. That was why a building increasing in size 

forced students to use more primitive strategies. Additionally, it was not obvious from the 

small buildings if the students had a local structuring or a layering-type structuring since the 

buildings were too small to determine this difference. Later, it became clear from the large 

buildings that their structuring was local; or it could be that they just started to form the 

layering-type structuring for small buildings; however, their conceptualization was so fragile 

that it could easily be distracted by the increasing size of the building.    

The pictorial situation was another effect that disturbed the students' spatial structuring. The 

reason for this appears to be the students' difficulty in visualizing three-dimensionality in 

pictorial representations. Before the instruction, all the participants used less viable 

strategies for the problems presented pictorially. In addition, most of the times students used 

completely different strategies for concrete and pictorial representations.     

For students, it was relatively easier to perceive three-dimensionality in concrete 

representations than it was from pictorial representations. Therefore, students might use a B 

type strategy for a concrete building, while they were still utilizing a C type strategy for a 

pictorial representation of the same building.  The reason was their difficulty in viewing the 

three-dimensional units in pictorial representation. Similarly, Battista and Clements (1996) 

found that students shifted from C to B strategies as they moved from the problems 

presented pictorially to the ones presented concretely. 

Practically, that students can identify an individual cube does not guarantee that they   are 

able to determine cubes in multilayer buildings until they firmly establish the three-

dimensional units.  Similarly, students may know that they have to find cubes and may 

determine individual cubes in the building but may not see any organization of them.  Only 

after some experience with appropriate materials (i.e., equal sharing of spatial constructions) 

can they construct a global structuring of the arrays of cubes. 

What specific actions and educational context made this achievement possible for the 

students? First, students physically and mentally involved in solving the problems provided in 

equal-sharing context. They made mistakes and corrected themselves. Second, the context 

required them to construct equal shares out of cubes. Third, the contexts also required them 

to make the same shares on pictorial representations by coloring the pictures. Through 

coloring the pictures, they tried to coordinate different views of unit cubes and the whole 

building. Fourth, after coloring they had a chance to see the pictorial buildings in layers 

shaded in with different colors. Last, students enjoyed doing all these things.  
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As a result, it can be said that it is almost meaningless to make the students memorize the 

volume formula if they do not know anything about the unit of volume and do not see any 

systematic organization of those units in rectangular prisms. In other words, it is important 

what they are counting as a unit and how they are enumerating the units in the whole. 

Without logical support it does not make any sense to them to multiply some numbers.  

Therefore, emphasis on these kinds of activities is crucial in helping children understand the 

underlying meaning of the measurement of volume and volume formula.  
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Appendix 

STUDENTS' STRATEGIES WHILE ENUMERATING CUBES ARRAYS 

A.  The student conceptualizes the set of cubes as forming a rectangular array organized into layers 

1. Layer multiplying: Student computes or counts the number of cubes in one layer (vertical or 
horizontal) and multiplies by the number of layers.  

2. Layer adding/iteration: Student computes the number of cubes in one layer (vertical or 
horizontal) and uses addition or skip counting (pointing to successive layers) to get the total.  

3. Counting subunits of layers: Student's counting of cubes is organized in layers, but the student 
counts by ones or skip counts by  a number that does not equal to the number of cubes in a 
layer. For example, the student counts the top layer by ones, then counts on from the result, 
again pointing to each cube in the top layer, for each of the two remaining layers.  

B.  The student conceptualizes the set of cubes as space filling but does not utilize layers.  

1. Column/row iteration: Student counts the number of cubes in one row or column and uses skip 
counting (pointing to successive rows or columns) to get the total.    

2. Counting subunits of columns or rows: Student's counting of cubes is  organized by row or 
column, but the student counts by ones or skip counts by a number that does not equal the 
number of cubes in a row or column. For example, the student counts by twos or ones, 
pointing successively to columns of four.    

3. Systematic counting: Student counts cubes systematically, attempting to count both inside and 
outside cubes. He/she might, for instance, count the cubes on all the outside faces, then 
attempts to determine how many are in the center.*  

4. Unsystematic counting: Student counts cubes in a random manner, often omitting or double 
counting cubes, but clearly tries to account for inside cubes.*    

C.  The student conceptualizes the set of cubes in terms of its faces. 

1. Counting subset of visible cubes: Student counts all, or a subset of, cubes on the front, right 
side, and top— those that are visible in the picture.*    

2. Counting all outside cubes: Student counts outside cubes on all six faces of the prism.*    

3. Counting some outside cubes: Student counts outside cubes on some visible and some 
hidden faces but does not count cubes on all six faces of the prism.*  

4. Counting front-layer cubes: Student counts outside cubes in front layer.  

5. Counting outside cubes, but not organized by faces.   

D.  The student uses the formula L x W x H.  

Student explicitly says he/she is using formula, or implies it by saying, "Multiply this times this 
times this" (pointing to relevant dimensions). There is no indication of understanding in terms of 
layers. (If students used the formula, they were asked, "Why did you multiply these numbers 
together? Why does this work?")  

E.  Other. 

Student uses a strategy other than those described in A - D, such as multiplying the number of 
squares on one face times the number on another face.   

* This strategy was used, and cubes on some edges were double counted.  

Source:  Battista, M. T., & Clements, D. H. (1996). Students' understanding of three-dimensional 
rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258 -
292. 


