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On Some Planes Of Lenz-Barlott1 Class I

Riistem KAYA

Ankara Universitesi Fen Fakiiltesi, Turkey
(Received June 2, 1974)

SUMMARY

We have presented some non-desarguesian planes and partially discussed
their basic geometries in [4]. The purpose of the present paper is to complete
this discussion by finding the corresponding ternary rings and the possible
collineation groups of these planes, from which it is inferred that they are
planes of classes I.1, 1.2, and L.4 in the Lenz-Barlotti Classification of projective
planes.

1 INTRODUCTION

A (P,L)-perspectivity is a collineation of a projective plane
which fixes every line through the point P and every point on the
line L. The perspectivity is an elation if P is on L, a homology if
P is not on L; in each case P is its centre and L its axis. A plane
is said (P,L)—transitive if and only if for each pair of points X, Y,
distinet from P, not on L, and collinear with'P, there exists a
(P, L)-perspectivity such that it maps X on Y. It is known that,
for the pair (P,L), the set of all (P,L)-perspectivities is a trans-
formation group which may contain only the identity. The (P,L)-
transitivity is equivalent to the (P,L)-Desarques Theorem, that
is, to the existence of all possible Desargues configurations with
centre P and axis L. Lenz [5] and Barlotti [1] have classified the
projective planes according to the set of the pairs (P,L), for which
planes are (P,L)~transitive. This set is usually denoted by F and
called the “figure” of plane to which it belongs. The figure of a
projective plane of class 1.1 is the empty set, while the figure of
a projective plane of class I.2 contains only one fixed pair (P,L);
the figure of a projective plane of class 1.4 is F — { Py, Ly):
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i = 1,23, P, ¢l and P; = L;~L,,j#iz#k}. There is also a
very close relationship between transitivity and the algebraic
properties of the corresponding ternary ring of a projective plane.
(An account of all related subjects is given in Dembowski [2] )
A division neo-ring is a triple (S, @, ©) consisting of a set
S with at least two distinct elements O and 1, and two binary
operations, addition © and multiplication © such that

(i) (S,@) is a loop with unit element O;

(i) (5-{0},®) is a loop with unit element 1;

(iii) 0Ox = x®0 = O, for all x €5;

(iv) Multiplication is distributive with respect to addition,
i. e., for all a,b,c €S
2 O(bE) = (26b) @ (20
and (a®b Gc = (a®c) @ (b®e).

Just as with rings, a modifying adjective such as commuta-
tive, associative preceding the phrase “division neo-ring” (DNR)
refers to multiplication. Associative division neo-rings have been
studied by Paige [6] under the name of neo-fields and it was
shown that, in general, a DNR is not a planar ternary ring. A
DNR (S, @, ®) is a linear planar ternary ring (with ternary
operation T(a,b,c) = a Ob@e) if and only if

(v) aOx@®b = ¢Ox@®d has a unique solution x for all

ab,c,d €S, asc, and,

(vi) x@a@®y = b, xQec@y = d has a unique solution x,y

for all a,b,e,d €5, a 7% c.

A DNR which satisfies (v) and (vi) is called a planar division
neo-ring (PDNR). The planar division neo-rings have been studied
extensively by Hughes [3].

2. PLANES OF CLASS 1

In this paper the non-desarguesian planes given in [4] are
presented in a different notation by giving the set of points and
the set of lines of the planes, and the incidence relation between



ON SOME PLANES OF LENZ-BARLOTTI CLASS I 57

the points and the lines. Throughout the paper R denotes the
field of real numbers unless some other binary operations are
defined on the set of real numbers. The set of non-zero elements
of R is denoted by R*. The symbol <O,p>, p €R, stands for
either the set { x: x R, O<x<p} or the set {x: x R, p<x<O;
according as p > O or p<O.

a. The extended plane, w, given in [4], can be represented
by elements of the set R\ {co} as follows:

Points, {(x,y); x,;y eR} o {(m): m eR} o {(oo)},

Lines, { [p.q.1]: p.q €R*} o {[p.4.0]: p.q eR*} v {[p,0]:
P R} U {looq]: q eRj U {[wo]};

Incidence, [p,q,1] = {(x,y): x*/p? + y?/q* = if x e<O0,p>
andy €<0,qg>,andx/p +y/q=1ifx ¢<0,p>} w { (—q/p}>

[p-4.0] = { (xy) : x/p+y/qg = O} {(-9/p)}-

[pro] = {(xy) : x =P} {(0)};
[oo.q] = {(xy) :y=q}w{(0)},
[o0] = {(m):m eR} o {(0)}.

The line [oo] and the points which are denoted by only one ele-
ment of R {0} such as (m), (o0) will be called the ideal line and
ideal points of the plane, while the others will be called ordinary
lines and ordinary points. (Notice that the boundary values of
<O,p> differ from the orijinal case in [4].)

Theorem 1. (i) The plane w supports non-trivial collineations:
(x,y) = (kx,hy) for arbitrary k,h eR*, which form an abelian group,
G; (ii) it also supports non-trivial collineations: (x,y) — (ky, hx)
for arbitrary, k,h e R*.

Proof. (i) Let @ be a transformation on = such that o ((x,y))
= (kx,hy), k,h €R*. The following can be easily satisfied: &
(poal) = [kphall 2([pg0) — [kphqOl, o ([p.co))
= fkp,o] and o ([w0,q]) = [, hq].It follows immediately
that o (()) = (o) and 2((-q/p)) = (-hq/kp) so @([0])
= [owo]. Since @ is a one—to-one correspondence of = onto itself
and preserve the collinearity (and therefore incidence), it is a
collineation. It is trivial to show that the set G = { o;: 7; ((x,
v)) = (kix;h;y), ki h; €R*} is an abelian group.
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(ii) Let § be a transformation on = such that § ((x,y)) =
(ky, hx), k,h €R*.In a similar way to the preceding case we get
¥ ([quﬂl]) = [kq.v hp, 1], 4’ ([p-9, 0]) = [kq, hp, O], ‘*p ([p>0])
= [c0, hp] and ¢ ([0, q]) = [kq, o], which imply ¢ ((~q/p))
= (hp [kq), § ((«)) = (0) and §{(0)) — (c0). Therefore & ([o0])
== [oo]. It is obvious that ¢ is a collineation of =, but H =
bt bi((xy))=(k;y,h;x), k;h; €R*} is not a transformation group.

Corollary 1. The plane = is ((0,0), [oo]-transitive.

Proof. The only ordinary point which is invariant under
each collineation ¢ in G is (0,0). All lines on the point (0,0),
[p.9.0], [0,0] and [0, O], are fixed (not pointwise) by o if
and only if h = k . The collineation (x, y) - (kx, ky) with k eR*
leaves the line [co] pointwise fixed and maps the lines on any
ideal point among themselves. Hence, it is a ((0,0), [o]) ~ho-
mology. For any pair of given points, (x,y) and (x’, y’), both dif-
ferent from (0,0) and collinear with (0,0), a k can be uniquely
determined from either of the equalities x’=kx and y’= ky.
Hence, = is ((0,0), [0]) —transitive.

Obviously, the ((0,0), [0]) ~homeologies of = form a subgroup
Gy of G.

Corollary 2. The plane = is ((O), [0,00]) —transitive.

Proof. Let G, be the subgroup of G, which consists of the
collineations (x,y) — (kx, y) with k eR*. Tt can be easilty seen
that each o, @ G, fixes the ideal point (O) and maps every
line through (O) onto itself, and leaves the ordinary line [0, o]
pointwise fixed. For two given points, (x,q) and (x’,q) on [0,q],
not on [0,0], a unique k can be found from kx == x’. Therefore,
every o, @ eGy, is a ((0), [O, ©]) ~homology, and = is ((O),
[0, ©]) ~transitive.

Corollary 3. The plane = is ((0), [o0, O]) —transitive.

Proof is similar to that of preceding corollaries. The
((0), [oo, O}) ~homologies are elements of the subgroup G, of G,
where @ G, if and only if o ({x, y)) = (x, hy) with h eR*.

The group G does not contain any other subroups which con-
sist of the (P, L) —perspevtivities, except G, Gy, G, and G,
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where G, is the subgroup which consist of the identity collineation.
The other collineation set H contains no (P,L) —perspectivity
of 7. These corolaries show that « is a (P,L)-Desargues plane for
three distinct pairs (P;, L;). (For. the definition of the (P, L)~De-
sargues plane see Pickert [7, p. 74].)

Theorem 2. 7 is a plane of class I.4.

Proof. By the above corollaries, we have the pairs ((0,0),
[]). ((0), [0, o0]) and ((0), [0, O]) for which = is transitive.
Further (0,0) ¢ [®©], (0) ¢ [0, ], (0) ¢ [00,0] and (0,0)
€ [0, o] ™ [0, O], (0) € [o] ™ [0, O], () € [0, o] ™
[c0]. Combining this result with the information given at the
begining of the paper, we can conclude that « is at least of class
1.4.To complete the proof it is necassary to show that there is
no other pair of (P, L) for which = is transitive. We will not prove
it here, but it will be confirmed by theorem 3.

In the following theorem, we will use the coordinate system
of Pickert [7].

Theorem 3. The plane = can be represented by coordinates
from a cemmutative and associative division neo-ring (R, @,®).
Multiplication ® for (R, @, ®) coincides with that of R itself,
but addition @ of (R, ® @) is defined as follows: u@v = (sign
v) (vi-u?)!? oru+v according asu €<0,~v> or u ¢ <O,~v>.

Proof. Let us choose the coordinatizing quadrangle as O =
(0,0), E = (L,1), U = (0) and V = (o). Then we get the ternary
operation as T(m, x, b) = (sign b) (b? — mx?)!/?> or mx+b ac-
cording as x €<0,-b /m> or x ¢<0,-bm> . Therefore,

(M u @v =T(1u,v)= 5 (sign v) (v=-u?)'/? if u €<0,~v>

fu + v if u ¢<O,~v>,
and u ® v = T(u,v,0) = uv for every u,v eR.
(i) Clearly, x®0 = O@®x = x, for all x €R.Let us show
that a®x = b has a unique solution x. The cases in which at

least any one of a and b is zero, or they have the same sign are
trivial.
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Suppose a>0 and b < O . In this case, by(*), x is to be
negative for a®x = b.Hence, a@x = b <« { —(x*>-a?)'/? if a €
<0,x> and a Px = b if a ¢ <O,=x>} . If a ¢<L0,—x>
then —a<<x<<0; and since b-a <—a the second equation has no
solution. If a € €0,~x> then x <- a. Therefore, x=- (a* + b?)'/?
is the only solution for the first equation.

Suppose a<<O and b > O. In this case(*) implies that x is
to be positive for a@x=b, and that a®x = b <« { + (x*-a?)'/?
=bif aec <O0,x> andax+bifa¢ <O,-x>}.Ifat¢
<0,-x> then O <x<-a; and since b—a>> —a the second equatinon
has no solution . If a e<€0, —x> then x > a. Since 4 (a* +
b#)1/2 > —a, it is the only solution for the first equation.

Now, let us show that x@a == b has a unique solution x.
The cases in which at least one of a and b ise zero, or they have
opposite signs are obvious. Notice that x and a are to have oppo-
site signs when x € <0,-a>.

Suppose a>0 and b>0. Then x Da =b <« { + (a*x?)'/?
=bif x €<0,~a> and x + a=b if x ¢ <0,~a>}. If a>b
then —(a’-b?)!?> e <0,~-a>, and therefore x =~ (a>~b?)!/* is a
solution for x @ a = b; since b-a € <€0,-a>, it can not be a
solution. If a <<b then b~a ¢ <€ O0,-a> . Hence, x = b-a is the
only solution for a @x =b.

Suppose a<<O and b<O. Similarly to the preceding case,
x@a =b & {x = +(a-b?))/? if x €e<€0,~a> and x = h-a
if x ¢<0,~a>} . If a>b then (a=-b?)Y? ¢ R. However, b-a ¢
<0,-a> and therefore x = b-a is the only solution for the
equation. If a<b then + (a>-b?)'/? € €0,-a> and b-a €<0,~a>.
Therefore x = -+ (a*~b?)'/? is the only solution for x®a = b.

As a result (R,®) is a loop. Further, each x in (R,®) has
the same additive inverse just as in (R,+).

Since multiplication is the same with that of R itself, (ii) and
(iii) are obvious (see the deinition of a division neo-ring), and the
following is enough for the validity of both the distrubitive laws:

w (u@v) = {w (sign v) (v - u?)'? if u e<O~v>

(sign wv)(wzvi-w=?)'/? if (uw) e<O,-wu>
= wu P wv.
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Let |m, k] denote any line which is not on V, in the new
coordinate system. It can be checked that (x,y) € [m)k] if and
only if y=mx @k, for all x,y,m,k €R. Since the ternary operation
is linear and new binary operations can be associated with the
plane m, (v) and (vi) follow from the postulates of being a pro-
jective plane, which have been proven for win [4]. This comple-
tes the proof of the theorem.

The above theorem shows that = is a (V, UV; U, OV)- and
(U,UV;V,0U)-Desargues plane, which are equivalent to certain
properties of the coresponding planar ternary ring of the plane
(see Pickert [7, pp. 80 and 98-99] ); and that = satisfies the (OU,
OV, UV) —Pappus theorem which is equivalent to R*, ©®) being

a commutative group. Further, it also confirms thecrem 2.

b. In the rest of this article, we shall state a number of conc-
lusions without proof, similar to those have been proven so far
about 7, which are about some other planes derived from 7. In
all these planes, the symbol [p,q] will denote the line { (x,y):
x[p+y/q=1, p,q eR*} _{(-q/p)}; however, some extra con-
ditions will be imposed on p or q, for each plane. The coordinati-
zing quadrangle will be OEUYV as in theorem 3.

The original plane given in [4], say ., can be derived from the
plane 7 in the following manner: Points of 7, are the points of 7.
All lines of = which have been denoted by [c0], [0, q], [p, ]
and [p,q, O] are also lines of w,; but the lines which have been
denoted by [p,q, 1] are replaced by the lines {p,q] if p<O and
q<0,0orp>0and q cR*; or they remain unchanged if p <O and
q>0.

The plane 7, supports the collineations: (x, y) — (kx, hy)
with h,k >0, and (x,y) — (ky, hx) with h,k < O, but no (P,L)
—perspectivity. Thus, m, contains no (P, L)-Desargues configu-
ration and is a plane of class I.1. n, can be associated with a non-
linear ternary ring in which neither of the distrunitive laws holds.
Multiplication of the corresponding ternary ring coincides with
that of R itself, and addition for it is defined as follows: u@v
= 4 (v=u?)!/? or u+v according as —v<u<O or unless -v<u<0O.
Four such planes, all isomorphic to wt,, can be derived from 7 by

changing the signs of p and q for the line [p,q].
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Although the following planes, 7, and 7,, have not been
mentioned in [4], the theorems proven in [4] are sufficient for
any of them being a projective plane.

The plane 7, can be derived from 7 in the following manner:
Points of w, are the points of =. All lines of w, except fp-q.1],
are lines of 7,; the lines [p,q, 1] are replaced by the lines [p,q]
if p>O0 or left unchanged if p<O. It can be associated with a
linear ternary ring of which binary operations are as follows:
u@v = uv; and u v = -+ (v-u?)'’? or utv according as
~v<u<O or unless -v<u< 0. Obviously, (R,®) is a loop, which
satisfies neither the associative nor the commutative law. Both
the distrubitive laws do not hold. Since the corresponding ternary
ring is linear and (R,®) is an abelian group, =, is (V,0U) —tran-
sitive (in former notation ((o0), [0,c0] )-transitive), therefore
7, is a plane of class 1.2. The plane 7, supports the collineations:
(x,y) - (kx, hy) with k>0, h £ 0, and ( (), [0,0]) — homolo-
gies: (x,y) — (x, hy) with h£0. Four such planes, all isomorphic
to ., can be derived from = by changing the condition imposed
on the line [p,q]; two of them are ((0), [ w0, O] )-transitive planes.

The other plane, 7,, can be described as follows: Its points
are the points of w. All lines of =, except [p.q, 1], are lines of
7,3 the lines [p,q,1] are replaced by the lines [p.q] if pq>O,
or left unchanged if pq<O. It can be coordinatized by elements
from a commutative and associative DNR, but the correponding
ternary ring is not linear. The binary operations, @ and ©, are
the same as those given for w in theorem 3. It supports the col-
lineations: (x, y) - (kx, hy), and (x,y) - (ky, hx), where k, h eR*
and kh > O. The set of collineations has the elements: (x,y)
— (kx, ky) with k e R* as ((0,0), [oo])-homologies. Another
plane, isomorphic to =,, can be derived from = by replacing
[p.q.1] with [p,q] if pq <O. =, is also a plane of class I.2.

Remarks : 1) Notice that the corresponding ternary rings
(according to the same coordinatizing quadrangle OEUV) of
some of the planes which are isomorphic either to w, or =, have
field properties, but not linear. 2) Besides the planes listed above,
another plane can be derived from 7 by replacing [p.q,1] with
[p.q] if p>O and q>O0, which is not isomorphic to any one of
the planes mentioned above. It is also a plane of class I.1.
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OZET

Bu makalede [4] ile verilen reel non-desarguesian projektif diizlemlerin ve aym
metotla inga edilen bagkalarnin i) iizerlerinde miimkiin olan kolinasyon gruplan ve on-
larm (P, L) -perspektivitelerden meydana gelen altgruplar1 yardimiyle mevcut Desar-
gues konfigurasyonlart aragtirihir; ii) miitekabil ternary halkalarimin genel olarak “di-
vision neo-ring” yapisinda olduklarn ispatianir. Daha sonra bunlar yardimiyla diizlem-
lerin Lenz-Barlotti ssmflamasinda I. 1, 1. 2 ve 1.4 tipinde olduklan gosterilir.
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