ON UNIVALENCE OF INTEGRAL OPERATORS

FATMA SAĞSÖZ

Abstract. In this paper we consider functions of ψ_{λ} and we define integral operators denoted by $F_{\beta, \lambda}$ and $G_{\beta, \lambda}$ using by ψ_{λ}, then we proved sufficient conditions for univalence of these integral operators.

1. Introduction

Let A be the class of functions f of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit $\operatorname{disk} U=\{z \in \mathbb{C}:|z|<1\}$.
We denote by S the subclass of A consisting of the functions $f \in A$ which are univalent in U.

Let ψ_{λ} defined by $\psi_{\lambda}(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)$ for $z \in U, f \in A$ and $0 \leq \lambda \leq 1$. We consider the integral operators

$$
\begin{gather*}
F_{\beta, \lambda}(z)=\left[\beta \int_{0}^{z} u^{\beta-1} \psi_{\lambda}^{\prime}(u) d u\right]^{\frac{1}{\beta}} \quad(z \in U) \tag{1.1}\\
G_{\beta, \lambda}(z)=\int_{0}^{z}\left[\psi_{\lambda}^{\prime}(u)\right]^{\beta} d u \quad(z \in U) \tag{1.2}
\end{gather*}
$$

for $\psi_{\lambda} \in A, 0 \leq \lambda \leq 1$ and for some complex numbers β. In the present paper, we obtain new univalence conditions for the integral operators $F_{\beta, \lambda}$ and $G_{\beta, \lambda}$ to be in the class S.

Recently the problem of univalence of some generalized integral operators have discussed by many authors such as: (see [2]-[8], [10], [14]-[16])

[^0]
2. Preliminary Results

To discuss our problems for univalence of integral operators $F_{\beta, \lambda}$ and $G_{\beta, \lambda}$, we recall here some results.

Theorem 1. Let $\alpha \in \mathbb{C}, \operatorname{Re} \alpha>0$ and $f \in A$. If

$$
\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in U$, then for any complex number $\beta, \operatorname{Re} \beta \geq \operatorname{Re} \alpha$, the function

$$
F_{\beta}(z)=\left[\beta \int_{0}^{z} u^{\beta-1} f^{\prime}(u) d u\right]^{\frac{1}{\beta}}
$$

is in the class S [12].
Theorem 2. Let $f \in A$. If for all $z \in U$

$$
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

then the function f is univalent in U [1].
Theorem 3. If the function g is regular and $|g(z)|<1$ in U, then for all $\eta \in U$ and $z \in U$ the following inequalities hold:

$$
\begin{equation*}
\left|\frac{g(\eta)-g(z)}{1-\overline{g(z)} g(\eta)}\right| \leq\left|\frac{\eta-z}{1-\bar{z} \eta}\right| \tag{2.1}
\end{equation*}
$$

and

$$
\left|g^{\prime}(z)\right| \leq \frac{1-|g(z)|^{2}}{1-|z|^{2}}
$$

In here, the equalities hold only in the case $g(z)=\varepsilon \frac{z+u}{1+\bar{u} z}$ where $|\varepsilon|=1$ and $|u|<1$ 9].
Remark 1. For $z=0$ and all $\eta \in U$, from inequality (2.1) we obtain

$$
\left|\frac{g(\eta)-g(0)}{1-\overline{g(0)} g(\eta)}\right| \leq|\eta|
$$

and, hence

$$
|g(\eta)| \leq \frac{|\eta|+|g(0)|}{1+|g(0)||\eta|}
$$

Considering $g(0)=a$ and $\eta=z$, then

$$
|g(z)| \leq \frac{|z|+|a|}{1+|a||z|}
$$

for all $z \in U \quad 9$.

Theorem 4. Let β be a complex number, $\operatorname{Re} \beta \geq 1$ and $f \in A, \frac{f(z)}{z} \neq 0$ for all $z \in U$. If there exist a constant $K \in(0, m(r)]$, where

$$
m(r)=\frac{1-2\left|a_{2}\right| r\left(1-r^{2}\right)+\sqrt{\left[1-2\left|a_{2}\right| r\left(1-r^{2}\right)\right]^{2}+8\left|a_{2}\right| r^{3}\left(1-r^{2}\right)}}{2 r^{2}\left(1-r^{2}\right)}
$$

$r=|z|, r \in(0,1)$ such that

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq K
$$

for all $z \in U^{*}=U-\{0\}$, then the function

$$
F_{\beta}(z)=\left[\beta \int_{0}^{z} u^{\beta-1} f^{\prime}(u) d u\right]^{\frac{1}{\beta}}
$$

is regular and univalent in U^{*} [11].
Theorem 5. Let $\beta \in \mathbb{C}$ and $g \in A$. If

$$
\left|\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right|<1
$$

for all $z \in U$ and the constant $|\beta|$ satisfies the condition

$$
|\beta| \leq \frac{1}{\max _{|z| \leq 1}\left[\left(1-|z|^{2}\right)|z| \frac{|z|+2\left|a_{2}\right|}{1+2\left|a_{2}\right||z|}\right]}
$$

then the function

$$
G_{\beta}(z)=\int_{0}^{z}\left[g^{\prime}(u)\right]^{\beta} d u
$$

is univalent in U [13].

3. Main Results

Theorem 6. Let $\beta \in \mathbb{C}, \operatorname{Re} \beta \geq 1$ and ψ_{λ} a regular function in $U, \frac{\psi_{\lambda}(z)}{z} \neq 0$ for all $z \in U$. If there exist a constant $K \in(0, m(r)]$, where

$$
\begin{equation*}
m(r)=\frac{1-2(1+\lambda)\left|a_{2}\right| r\left(1-r^{2}\right)+\sqrt{\left[1-2(1+\lambda)\left|a_{2}\right| r\left(1-r^{2}\right)\right]^{2}+8(1+\lambda)\left|a_{2}\right| r^{3}\left(1-r^{2}\right)}}{2 r^{2}\left(1-r^{2}\right)} \tag{3.1}
\end{equation*}
$$

$r=|z|, r \in(0,1)$ such that

$$
\left|\frac{\psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)}\right| \leq K
$$

for all $z \in U^{*}$, then the function (1.1) is regular and univalent in U^{*}.

Proof. Let's consider the function $g(z)=\frac{1}{K} \frac{\psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)}$ where K is a real positive constant. Applying Theorem 3 and Remark 1 to the function g, we obtain

$$
\left|\frac{1}{K} \frac{\psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)}\right| \leq \frac{|z|+\frac{2(1+\lambda)\left|a_{2}\right|}{K}}{1+\frac{2(1+\lambda)\left|a_{2}\right|}{K}|z|}, \quad z \in U^{*}
$$

and hence, we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z \psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)}\right| \leq K\left(1-|z|^{2}\right)|z| \frac{|z|+\frac{2(1+\lambda)\left|a_{2}\right|}{K}}{1+\frac{2(1+\lambda)\left|a_{2}\right|}{K}|z|} \tag{3.2}
\end{equation*}
$$

Let's consider the inequality

$$
\begin{equation*}
K \leq \frac{1}{\left(1-|z|^{2}\right)|z| \frac{|z|+\frac{2(1+\lambda)\left|a_{2}\right|}{K+\frac{2(1+\lambda)\left|a_{2}\right|}{K}|z|}}{}} \tag{3.3}
\end{equation*}
$$

Considering $|z|=r, r \in(0,1)$ and $2\left|a_{2}\right|=p, p>0$, the inequality 3.3 becomes

$$
\begin{equation*}
K \leq \frac{K+(1+\lambda) p r}{\left(1-r^{2}\right) r[K r+(1+\lambda) p]} \tag{3.4}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\left(1-r^{2}\right) r[K r+(1+\lambda) p]>0 \tag{3.5}
\end{equation*}
$$

for every $K>0, p>0, r \in(0,1)$ and $0 \leq \lambda \leq 1$. Using (3.5) the inequality (3.4) becomes

$$
r^{2}\left(1-r^{2}\right) K^{2}+\left[(1+\lambda) p r\left(1-r^{2}\right)-1\right] K-(1+\lambda) p r \leq 0
$$

Let us consider the equation

$$
\begin{equation*}
r^{2}\left(1-r^{2}\right) K^{2}+\left[(1+\lambda) p r\left(1-r^{2}\right)-1\right] K-(1+\lambda) p r=0 \tag{3.6}
\end{equation*}
$$

with the unknown K. From (3.6 we obtain

$$
\begin{equation*}
K_{1,2}=\frac{1-(1+\lambda) p r\left(1-r^{2}\right) \pm \sqrt{\left[1-(1+\lambda) p r\left(1-r^{2}\right)\right]^{2}+4(1+\lambda) p r^{3}\left(1-r^{2}\right)}}{2 r^{2}\left(1-r^{2}\right)} \tag{3.7}
\end{equation*}
$$

For every $p>0, r \in(0,1)$ and $0 \leq \lambda \leq 1$ the following inequality holds

$$
\begin{equation*}
\left[1-(1+\lambda) p r\left(1-r^{2}\right)\right]^{2}+4(1+\lambda) p r^{3}\left(1-r^{2}\right)>0 \tag{3.8}
\end{equation*}
$$

Using (3.7) and (3.8) it results that K_{1}, K_{2} are real solutions. Considering $a=$ $1-r^{2}, a \in(0,1)$ and $b=p r, b>0$ from (3.7) we get

$$
\begin{equation*}
K_{1,2}=\frac{1-(1+\lambda) a b \pm \sqrt{[1-(1+\lambda) a b]^{2}+4(1+\lambda) a b(1-a)}}{2 a(1-a)} . \tag{3.9}
\end{equation*}
$$

We have the following cases:

Case 1. For $\left|a_{2}\right|>\frac{1}{2(1+\lambda) r\left(1-r^{2}\right)}$ it results that $1-(1+\lambda) a b<0$, so that

$$
K_{1}=\frac{1-(1+\lambda) a b-\sqrt{[1-(1+\lambda) a b]^{2}+4(1+\lambda) a b(1-a)}}{2 a(1-a)}
$$

is real negative solution. Clearly,

$$
K_{2}=\frac{1-(1+\lambda) a b+\sqrt{[1-(1+\lambda) a b]^{2}+4(1+\lambda) a b(1-a)}}{2 a(1-a)}
$$

is real positive solution. In this case, for $K \in\left(0, K_{2}\right]$ the inequality (3.3) is verified.
Case 2. For $\left|a_{2}\right|<\frac{1}{2(1+\lambda) r\left(1-r^{2}\right)}$ it results that $1-(1+\lambda) a b>0$.
Let's prove that $K_{1}<0$. Supposing that $K_{1}>0$, we obtain $4(1+\lambda) a b(1-a)<$ 0 the fact which is false. It results that $K_{1}<0$. We note that $K_{2}>0$, and the inequality 3.3 is verified for $K \in\left(0, K_{2}\right]$.

Case 3. For $\left|a_{2}\right|=\frac{1}{2(1+\lambda) r\left(1-r^{2}\right)}$ using 3.9) we obtain

$$
K_{1,2}=\frac{ \pm \sqrt{(1+\lambda) a b(1-a)}}{a(1-a)}
$$

and the inequality (3.3) is verified only for $K \in\left(0, K_{2}\right]$ where

$$
K_{2}=\frac{\sqrt{(1+\lambda) a b(1-a)}}{a(1-a)} .
$$

Considering equality (3.1) in conclusion for $\left|a_{2}\right|$, r stable and $K \in(0, m(r)]$, the inequality (3.3) is verified and using (3.2) it results that

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z \psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)}\right| \leq 1, z \in U^{*} \tag{3.10}
\end{equation*}
$$

From (3.10) and Theorem 1 in the case $\alpha=1$ we obtain that the function $F_{\beta, \lambda}(z)$ is regular and univalent in U^{*}.

Theorem 7. Let β be a complex number and the function $\psi_{\lambda} \in A, \psi_{\lambda}(z)=$ $(1-\lambda) f(z)+\lambda z f^{\prime}(z)$ for $f \in A$ and $0 \leq \lambda \leq 1$. If

$$
\begin{equation*}
\left|\frac{\psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)}\right|<1 \tag{3.11}
\end{equation*}
$$

for all $z \in U$ and the constant $|\beta|$ satisfies the condition

$$
\begin{equation*}
|\beta| \leq \frac{1}{\max _{|z| \leq 1}\left[\left(1-|z|^{2}\right)|z| \frac{|z|+2(1+\lambda)\left|a_{2}\right|}{1+2(1+\lambda)\left|a_{2}\right||z|}\right]} \tag{3.12}
\end{equation*}
$$

then the function $G_{\beta, \lambda}$ is univalent in U.

Proof. The function $G_{\beta, \lambda}$ defined by 1.2 is regular in U. Let us consider the function

$$
\begin{equation*}
p(z)=\frac{1}{|\beta|} \frac{G_{\beta, \lambda}^{\prime \prime}(z)}{G_{\beta, \lambda}^{\prime}(z)} \tag{3.13}
\end{equation*}
$$

where the constant $|\beta|$ satisfies the inequality 3.12 . The function p is regular in U and from 1.2 and 3.13 we have

$$
\begin{equation*}
p(z)=\frac{\beta}{|\beta|} \frac{\psi_{\lambda}^{\prime \prime}(z)}{\psi_{\lambda}^{\prime}(z)} \tag{3.14}
\end{equation*}
$$

Using (3.14) and (3.11) we obtain

$$
|p(z)|<1
$$

for all $z \in U$ and $|p(0)|=2(1+\lambda)\left|a_{2}\right|$. When Remark 1 applied to the function p, it gives

$$
\begin{equation*}
\frac{1}{|\beta|} \frac{G_{\beta, \lambda}^{\prime \prime}(z)}{G_{\beta, \lambda}^{\prime}(z)} \leq \frac{|z|+2(1+\lambda)\left|a_{2}\right|}{1+2(1+\lambda)\left|a_{2}\right||z|} \tag{3.15}
\end{equation*}
$$

for all $z \in U$. From (3.15 we get

$$
\left(1-|z|^{2}\right)\left|\frac{z G_{\beta, \lambda}^{\prime \prime}(z)}{G_{\beta, \lambda}^{\prime}(z)}\right| \leq|\beta|\left(1-|z|^{2}\right)|z| \frac{|z|+2(1+\lambda)\left|a_{2}\right|}{1+2(1+\lambda)\left|a_{2}\right||z|}
$$

for all $z \in U$. Hence we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z G_{\beta, \lambda}^{\prime \prime}(z)}{G_{\beta, \lambda}^{\prime}(z)}\right| \leq|\beta| \max _{|z| \leq 1}\left(1-|z|^{2}\right)|z| \frac{|z|+2(1+\lambda)\left|a_{2}\right|}{1+2(1+\lambda)\left|a_{2}\right||z|} \tag{3.16}
\end{equation*}
$$

From 3.16 and 3.12 we obtain

$$
\left(1-|z|^{2}\right)\left|\frac{z G_{\beta, \lambda}^{\prime \prime}(z)}{G_{\beta, \lambda}^{\prime}(z)}\right| \leq 1
$$

for all $z \in U$. From Theorem 2 it follows that the function $G_{\beta, \lambda}$ defined by $\sqrt{1.2}$ is univalent in U.

Remark 2. Taking $\lambda=0$ in Theorem $\sqrt{6}$ and Theorem $\sqrt{7}$, we obtain Theorem 4 and Theorem 5, respectively.

If we take $\lambda=1$ in Theorem 6 and Theorem 7 , we have the following corollaries.
Corollary 1. Let β be a complex number, $\operatorname{Re} \beta \geq 1$ and ψ_{1} a regular function in $U, \psi_{1}(z)=z f^{\prime}(z)$ and $\frac{\psi_{1}(z)}{z} \neq 0$ for all $z \in U$. If there exist a constant $K \in(0, m(r)]$, where

$$
m(r)=\frac{1-4\left|a_{2}\right| r\left(1-r^{2}\right)+\sqrt{\left[1-4\left|a_{2}\right| r\left(1-r^{2}\right)\right]^{2}+16\left|a_{2}\right| r^{3}\left(1-r^{2}\right)}}{2 r^{2}\left(1-r^{2}\right)}
$$

$r=|z|, r \in(0,1]$ such that

$$
\left|\frac{\psi_{1}^{\prime \prime}(z)}{\psi_{1}^{\prime}(z)}\right|=\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq K
$$

for all $z \in U^{*}$, then the function

$$
F_{\beta, 1}(z)=\left[\beta \int_{0}^{z} u^{\beta-1} \psi_{1}^{\prime}(u) d u\right]^{\frac{1}{\beta}}
$$

is regular and univalent in U^{*}.
Corollary 2. Let β be a complex number and the function $\psi_{1}(z)=z f^{\prime}(z)$ where $f \in A$. If

$$
\left|\frac{\psi_{1}^{\prime \prime}(z)}{\psi_{1}^{\prime}(z)}\right|<1
$$

for all $z \in U$ and the constant $|\beta|$ satisfies the condition

$$
|\beta| \leq \frac{1}{\max _{|z| \leq 1}\left[\left(1-|z|^{2}\right)|z| \frac{|z|+4\left|a_{2}\right|}{1+4\left|a_{2}\right||z|}\right]}
$$

then the function

$$
G_{\beta, 1}(z)=\int_{0}^{z}\left[\psi_{1}^{\prime}(u)\right]^{\beta} d u
$$

is univalent in U.

References

[1] Becker, J., Löwnersche Differentialgleichung und quasiconform fortsetzbare schichte functionen, J. Reine Angev. Math. 255 (1972), 23-43.
[2] Breaz, D. and Pescar, V., On conditions for univalence of some integral operators, Hacet. J. Math. Stat. 45(2)(2016), 337-342.
[3] Çağlar, M. and Orhan, H., Some generalizations on the univalence of an integral operator and quasiconformal extensions, Miskolc Math. Notes 14 (1)(2013),49-62.
[4] Deniz, E., Univalence criteria for a general integral operator, Filomat 28(1) (2014), 11-19.
[5] Deniz, E., On the univalence of two general integral operators, Filomat 29(7) (2015), 15811586.
[6] Deniz, E. and Orhan, H., An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Sklodowska Sect. A 64(2) (2010) 29-35.
[7] Frasin, B. A., Univalence of two general integral operators, Filomat 23(3) (2009), 223-229.
[8] Frasin, B. A., Univalence criteria for general integral operator, Math. Commun. 16(1) (2011), 115-124.
[9] Nehari, Z., Conformal Mapping, Mc. Graw-Hill Book Comp., New York, 1952. (Dover. Publ. Inc. 1975.)
[10] Orhan, H., Raducanu, D. and Çağlar, M., Some sufficient conditions for the univalence of an integral operator, J. Class. Anal., 5(1)(2014), 61-70.
[11] Pascu, N. N. and Pescar, V., New criteria of Kudriasov type univalence, Scripta Scientiarum Mathematicarum, Tomus I, Anno MCMXCVII, 210-215.
[12] Pascu, N. N., An improvement of Becker's univalence criterion, Proceeding of the Commemorative Session Simion Stoilow, Braşov, (1987), 43-48.
[13] Pescar, V., Some integral operators and their univalence, The Journal of Analysis, 5(1997), 157-162.
[14] Pescar, V., On the univalence of an integral operator, Appl. Math. Lett. 23(5) (2010) 615-619.
[15] Pescar, V. and Breaz, D., On an integral operator, Appl. Math. Lett. 23(5) (2010) 625-629.
[16] Srivastava, H. M., Deniz E. and Orhan, H., Some general univalence critera for a family of integral operators, Appl. Math. Comp. 215(2010) 3696-3701.

Current address: Department of Mathematics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey

E-mail address: faltuntas@atauni.edu.tr
ORCID Address: http://orcid.org/0000-0003-4459-0615

[^0]: Received by the editors: March 08, 2017, Accepted: June 19, 2017.
 2010 Mathematics Subject Classification. Primary 30C45.
 Key words and phrases. Analytic functions, univalent functions, univalance conditions, integral operators.

