
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 67, Number 2, Pages 139—146 (2018)
DOI: 10.1501/Commua1_0000000868
ISSN 1303—5991

Available online: September 26, 2017

http://communications.science.ankara.edu.tr/index.php?series=A1

ON UNIVALENCE OF INTEGRAL OPERATORS

FATMA SAĞSÖZ

Abstract. In this paper we consider functions of ψλ and we define integral
operators denoted by Fβ,λ and Gβ,λ using by ψλ, then we proved suffi cient
conditions for univalence of these integral operators.

1. Introduction

Let A be the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
We denote by S the subclass of A consisting of the functions f ∈ A which are

univalent in U .
Let ψλ defined by ψλ(z) = (1− λ) f(z)+λzf

′
(z) for z ∈ U, f ∈ A and 0 ≤ λ ≤ 1.

We consider the integral operators

Fβ,λ (z) =

[
β

∫ z

0

uβ−1ψ
′

λ (u) du

] 1
β

(z ∈ U) , (1.1)

Gβ,λ (z) =

∫ z

0

[
ψ
′

λ (u)
]β
du (z ∈ U) (1.2)

for ψλ ∈ A, 0 ≤ λ ≤ 1 and for some complex numbers β. In the present paper, we
obtain new univalence conditions for the integral operators Fβ,λ and Gβ,λ to be in
the class S.
Recently the problem of univalence of some generalized integral operators have

discussed by many authors such as: (see [2]-[8], [10],[14]-[16])
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2. Preliminary Results

To discuss our problems for univalence of integral operators Fβ,λ and Gβ,λ, we
recall here some results.

Theorem 1. Let α ∈ C,Reα > 0 and f ∈ A. If

1− |z|2Reα

Reα

∣∣∣∣∣zf
′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ 1
for all z ∈ U, then for any complex number β, Reβ ≥ Reα, the function

Fβ (z) =

[
β

∫ z

0

uβ−1f
′
(u) du

] 1
β

is in the class S [12].

Theorem 2. Let f ∈ A. If for all z ∈ U(
1− |z|2

) ∣∣∣∣∣zf
′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ 1
then the function f is univalent in U [1].

Theorem 3. If the function g is regular and |g (z)| < 1 in U , then for all η ∈ U
and z ∈ U the following inequalities hold:∣∣∣∣∣ g (η)− g (z)1− g (z)g (η)

∣∣∣∣∣ ≤
∣∣∣∣ η − z1− zη

∣∣∣∣ (2.1)

and ∣∣∣g′ (z)∣∣∣ ≤ 1− |g (z)|2
1− |z|2

.

In here, the equalities hold only in the case g (z) = ε z+u1+uz where |ε| = 1 and |u| < 1
[9].

Remark 1. For z = 0 and all η ∈ U , from inequality (2.1) we obtain∣∣∣∣∣ g (η)− g (0)1− g (0)g (η)

∣∣∣∣∣ ≤ |η|
and, hence

|g (η)| ≤ |η|+ |g (0)|
1 + |g (0)| |η| .

Considering g (0) = a and η = z, then

|g (z)| ≤ |z|+ |a|
1 + |a| |z|

for all z ∈ U [9].
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Theorem 4. Let β be a complex number, Reβ ≥ 1 and f ∈ A, f(z)z 6= 0 for all
z ∈ U . If there exist a constant K ∈ (0,m (r)], where

m (r) =
1− 2 |a2| r

(
1− r2

)
+

√
[1− 2 |a2| r (1− r2)]2 + 8 |a2| r3 (1− r2)
2r2 (1− r2)

r = |z| , r ∈ (0, 1) such that ∣∣∣∣∣f
′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ K
for all z ∈ U∗ = U − {0}, then the function

Fβ (z) =

[
β

∫ z

0

uβ−1f
′
(u) du

] 1
β

is regular and univalent in U∗ [11].

Theorem 5. Let β ∈ C and g ∈ A. If∣∣∣∣∣g
′′
(z)

g′ (z)

∣∣∣∣∣ < 1
for all z ∈ U and the constant |β| satisfies the condition

|β| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+2|a2|1+2|a2||z|

]
then the function

Gβ (z) =

∫ z

0

[
g
′
(u)
]β
du

is univalent in U [13].

3. Main Results

Theorem 6. Let β ∈ C, Reβ ≥ 1 and ψλ a regular function in U ,
ψλ(z)
z 6= 0 for

all z ∈ U. If there exist a constant K ∈ (0,m (r)], where

m (r) =
1− 2 (1 + λ) |a2| r

(
1− r2

)
+

√
[1− 2 (1 + λ) |a2| r (1− r2)]2 + 8 (1 + λ) |a2| r3 (1− r2)

2r2 (1− r2)
(3.1)

r = |z| , r ∈ (0, 1) such that ∣∣∣∣∣ψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ K
for all z ∈ U∗, then the function (1.1) is regular and univalent in U∗.
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Proof. Let’s consider the function g (z) = 1
K
ψ
′′
λ (z)

ψ
′
λ(z)

where K is a real positive con-

stant. Applying Theorem3 and Remark1 to the function g, we obtain∣∣∣∣∣ 1K ψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ |z|+ 2(1+λ)|a2|
K

1 + 2(1+λ)|a2|
K |z|

, z ∈ U∗

and hence, we have(
1− |z|2

) ∣∣∣∣∣zψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ K (1− |z|2) |z| |z|+
2(1+λ)|a2|

K

1 + 2(1+λ)|a2|
K |z|

. (3.2)

Let’s consider the inequality

K ≤ 1(
1− |z|2

)
|z| |z|+

2(1+λ)|a2|
K

1+
2(1+λ)|a2|

K |z|

. (3.3)

Considering |z| = r, r ∈ (0, 1) and 2 |a2| = p, p > 0, the inequality (3.3) becomes

K ≤ K + (1 + λ) pr

(1− r2) r [Kr + (1 + λ) p] . (3.4)

We note that (
1− r2

)
r [Kr + (1 + λ) p] > 0 (3.5)

for every K > 0, p > 0, r ∈ (0, 1) and 0 ≤ λ ≤ 1. Using (3.5) the inequality (3.4)
becomes

r2
(
1− r2

)
K2 +

[
(1 + λ) pr

(
1− r2

)
− 1
]
K − (1 + λ) pr ≤ 0.

Let us consider the equation

r2
(
1− r2

)
K2 +

[
(1 + λ) pr

(
1− r2

)
− 1
]
K − (1 + λ) pr = 0, (3.6)

with the unknown K. From (3.6) we obtain

K1,2 =
1− (1 + λ) pr

(
1− r2

)
±
√
[1− (1 + λ) pr (1− r2)]2 + 4 (1 + λ) pr3 (1− r2)

2r2 (1− r2) .

(3.7)
For every p > 0, r ∈ (0, 1) and 0 ≤ λ ≤ 1 the following inequality holds[

1− (1 + λ) pr
(
1− r2

)]2
+ 4 (1 + λ) pr3

(
1− r2

)
> 0. (3.8)

Using (3.7) and (3.8) it results that K1,K2 are real solutions. Considering a =
1− r2, a ∈ (0, 1) and b = pr, b > 0 from (3.7) we get

K1,2 =
1− (1 + λ) ab±

√
[1− (1 + λ) ab]2 + 4 (1 + λ) ab (1− a)

2a (1− a) . (3.9)

�

We have the following cases:
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Case 1. For |a2| > 1
2(1+λ)r(1−r2) it results that 1− (1 + λ) ab < 0, so that

K1 =
1− (1 + λ) ab−

√
[1− (1 + λ) ab]2 + 4 (1 + λ) ab (1− a)

2a (1− a)
is real negative solution. Clearly,

K2 =
1− (1 + λ) ab+

√
[1− (1 + λ) ab]2 + 4 (1 + λ) ab (1− a)

2a (1− a)
is real positive solution. In this case, for K ∈ (0,K2] the inequality (3.3) is verified.

Case 2. For |a2| < 1
2(1+λ)r(1−r2) it results that 1− (1 + λ) ab > 0.

Let’s prove thatK1 < 0. Supposing thatK1 > 0, we obtain 4 (1 + λ) ab (1− a) <
0 the fact which is false. It results that K1 < 0. We note that K2 > 0, and the
inequality (3.3) is verified for K ∈ (0,K2] .

Case 3. For |a2| = 1
2(1+λ)r(1−r2) using (3.9) we obtain

K1,2 =
±
√
(1 + λ) ab (1− a)
a (1− a)

and the inequality (3.3) is verified only for K ∈ (0,K2] where

K2 =

√
(1 + λ) ab (1− a)

a (1− a) .

Considering equality (3.1) in conclusion for |a2|, r stable and K ∈ (0,m (r)], the
inequality (3.3) is verified and using (3.2) it results that(

1− |z|2
) ∣∣∣∣∣zψ

′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ ≤ 1, z ∈ U∗. (3.10)

From (3.10) and Theorem1 in the case α = 1 we obtain that the function Fβ,λ (z)
is regular and univalent in U∗.

Theorem 7. Let β be a complex number and the function ψλ ∈ A,ψλ(z) =

(1− λ) f(z) + λzf ′(z) for f ∈ A and 0 ≤ λ ≤ 1. If∣∣∣∣∣ψ
′′

λ (z)

ψ
′

λ (z)

∣∣∣∣∣ < 1 (3.11)

for all z ∈ U and the constant |β| satisfies the condition

|β| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+2(1+λ)|a2|1+2(1+λ)|a2||z|

] (3.12)

then the function Gβ,λ is univalent in U .
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Proof. The function Gβ,λ defined by (1.2) is regular in U . Let us consider the
function

p (z) =
1

|β|
G

′′

β,λ (z)

G
′
β,λ (z)

(3.13)

where the constant |β| satisfies the inequality (3.12). The function p is regular in
U and from (1.2) and (3.13) we have

p (z) =
β

|β|
ψ
′′

λ (z)

ψ
′

λ (z)
. (3.14)

Using (3.14) and (3.11) we obtain

|p (z)| < 1
for all z ∈ U and |p (0)| = 2 (1 + λ) |a2|. When Remark1 applied to the function p,
it gives

1

|β|
G

′′

β,λ (z)

G
′
β,λ (z)

≤ |z|+ 2 (1 + λ) |a2|
1 + 2 (1 + λ) |a2| |z|

(3.15)

for all z ∈ U . From (3.15) we get(
1− |z|2

) ∣∣∣∣∣zG
′′

β,λ (z)

G
′
β,λ (z)

∣∣∣∣∣ ≤ |β|(1− |z|2) |z| |z|+ 2 (1 + λ) |a2|1 + 2 (1 + λ) |a2| |z|

for all z ∈ U . Hence we have(
1− |z|2

) ∣∣∣∣∣zG
′′

β,λ (z)

G
′
β,λ (z)

∣∣∣∣∣ ≤ |β|max|z|≤1

(
1− |z|2

)
|z| |z|+ 2 (1 + λ) |a2|
1 + 2 (1 + λ) |a2| |z|

. (3.16)

From (3.16) and (3.12) we obtain(
1− |z|2

) ∣∣∣∣∣zG
′′

β,λ (z)

G
′
β,λ (z)

∣∣∣∣∣ ≤ 1
for all z ∈ U . From Theorem2, it follows that the function Gβ,λ defined by (1.2) is
univalent in U . �

Remark 2. Taking λ = 0 in Theorem6 and Theorem7, we obtain Theorem4 and
Theorem5, respectively.

If we take λ = 1 in Theorem6 and Theorem7, we have the following corollaries.

Corollary 1. Let β be a complex number, Reβ ≥ 1 and ψ1 a regular function
in U,ψ1 (z) = zf

′
(z) and ψ1(z)

z 6= 0 for all z ∈ U . If there exist a constant
K ∈ (0,m (r)], where

m (r) =
1− 4 |a2| r

(
1− r2

)
+

√
[1− 4 |a2| r (1− r2)]2 + 16 |a2| r3 (1− r2)
2r2 (1− r2) ,
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r = |z| , r ∈ (0, 1] such that ∣∣∣∣∣ψ
′′

1 (z)

ψ
′

1 (z)

∣∣∣∣∣ =
∣∣∣∣∣f

′′
(z)

f ′ (z)

∣∣∣∣∣ ≤ K
for all z ∈ U∗, then the function

Fβ,1 (z) =

[
β

∫ z

0

uβ−1ψ
′

1 (u) du

] 1
β

is regular and univalent in U∗.

Corollary 2. Let β be a complex number and the function ψ1 (z) = zf
′
(z) where

f ∈ A. If ∣∣∣∣∣ψ
′′

1 (z)

ψ
′

1 (z)

∣∣∣∣∣ < 1
for all z ∈ U and the constant |β| satisfies the condition

|β| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+4|a2|1+4|a2||z|

]
then the function

Gβ,1 (z) =

∫ z

0

[
ψ
′

1 (u)
]β
du

is univalent in U .
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